[1]Williams DF.On the mechanisms of biocompatibility[J].Biomaterials, 2008, 29(20):2941-2953[2]Niinomi M.Mechanical biocompatibilities of titanium alloys for biomedical applications[J].J Mech Behav Biomed Mater, 2008, 1(1):30-42[3]Al-Nawas B, K?mmerer PW, Morbach T,et al.Retrospective clinical evaluation of an internal tube-in-tube dental implant after 4 years,with special emphasis on peri-implant bone resorption[J].Int J Oral Maxillofac Implants, 2011, 26(6):1309-1316[4]Zhao G, Schwartz Z, Wieland M, et al.High surface energy enhances cell response to titanium substrate microstructure[J].J Biomed Mater Res A, 2005, 74(1):49-58[5]Olivares-Navarrete R1, Hyzy SL, Gittens RA 1st, et al.Rough titanium alloys regulate osteoblast production of angiogenic factors[J].Spine J, 2013, 13(11):1563-1570[6]Walsh MC, Kim N, Kadono Y, et al.Osteoimmunology: interplay between the immune system and bone metabolism[J].Annu Rev Immunol, 2006, 24:33-63[7]Trindade R, Albrektsson T, Galli S, et al.Osseointegration and foreign body reaction: Titanium implants activate the immune system and suppress bone resorption during the first 4 weeks after implantation[J].Clin Implant Dent Relat Res, 2018, 20(1):82-91[8]Refai AK, Textor M, Brunette DM, et al.Effect of titanium surface topography on macrophage activation and secretion of proinflammatory cytokines and chemokines[J].J Biomed Mater Res A, 2004, 70(2):194-205[9]Tan KS, Qian L, Rosado R, et al.The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production[J].Biomaterials, 2006, 27(30):5170-5177[10]Hamlet S, Alfarsi M, George R, et al.The effect of hydrophilic titanium surface modification on macrophage inflammatory cytokine gene expression[J].Clin Oral Implants Res, 2012, 23(5):584-590[11]Alfarsi MA, Hamlet SM, Ivanovski S.Titanium surface hydrophilicity modulates the human macrophage inflammatory cytokine response[J].J Biomed Mater Res A, 2014, 102(1):60-67[12]Alfarsi MA, Hamlet SM, Ivanovski S.The Effect of Platelet Proteins Released in Response to Titanium Implant Surfaces on Macrophage Pro-Inflammatory Cytokine Gene Expression[J].Clin Implant Dent Relat Res, 2015, 17(6):1036-1047[13]Hotchkiss KM, Reddy GB, Hyzy SL, et al.Titanium surface characteristics, including topography and wettability, alter macrophage activation[J].Acta Biomater, 2016, 31:425-434[14]Sunarso, Toita R, Tsuru K, et al.A superhydrophilic titanium implant functionalized by ozone gas modulates bone marrow cell and macrophage responses[J].J Mater Sci Mater Med, 2016, 27(8):127-[15]Hotchkiss KM, Ayad NB, Hyzy SL, et al.Dental implant surface chemistry and energy alter macrophage activation in vitro[J].Clin Oral Implants Res, 2017, 28(4):414-423[16]Lee RSB, Hamlet SM, Ivanovski S.The influence of titanium surface characteristics on macrophage phenotype polarization during osseous healing in type I diabetic rats: a pilot study[J].Clin Oral Implants Res, 2017, 28(10):e159-e168[17]Liu YC, Zou XB, Chai YF, et al.Macrophage polarization in inflammatory diseases[J].Int J Biol Sci, 2014, 10(5):520-529[18]DeFife KM, Jenney CR, McNally AK, et al.Interleukin-13 induces human monocytemacrophage fusion and macrophage mannose receptor expression[J].J Immunol, 1997, 158(7):3385-3390[19]Helming L, Gordon S.Molecular mediators of macrophage fusion[J].Trends Cell Biol, 2009, 19(10):514-522[20]Bao P, Kodra A, Tomic-Canic M, et al.The role of vascular endothelial growth factor in wound healing[J].J Surg Res, 2009, 153(2):347-358[21]MacDonald DE, Markovic B, Allen M, et al.Surface analysis of human plasma fibronectin adsorbed to commercially pure titanium materials[J].J Biomed Mater Res, 1998, 41(1):120-130[22]Mayer A, Roch T, Kratz K, et al.Pro-angiogenic CD14(++) CD16(+) CD163(+) monocytes accelerate the in vitro endothelialization of soft hydrophobic poly (n-butyl acrylate) networks[J].Acta Biomater, 2012, 8(12):4253-4259[23]Oh S, Brammer KS, Li YS, et al.Stem cell fate dictated solely by altered nanotube dimension[J].Proc Natl Acad Sci U S A, 2009, 106(7):2130-2135[24]Brammer KS, Oh S, Cobb CJ, et al.Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface[J].Acta Biomater, 2009, 5(8):3215-3223[25]Rajyalakshmi A, Ercan B, Balasubramanian K, et al.Reduced adhesion of macrophages on anodized titanium with select nanotube surface features[J].Int J Nanomedicine, 2011, 6:1765-1771[26]Ma QL, Zhao LZ, Liu RR, et al.Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization[J].Biomaterials, 2014, 35(37):9853-9867[27]Neacsu P, Mazare A, Cimpean A, et al.Reduced inflammatory activity of RAW 264.7 macrophages on titania nanotube modified Ti surface[J].Int J Biochem Cell Biol, 2014, 55:187-195[28]Sun SJ, Yu WQ, Zhang YL, et al.Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression[J].Cell Prolif, 2013, 46(6):685-694[29]Wang J, Qian S, Liu X, et al.M2 macrophages contribute to osteogenesis and angiogenesis on nanotubular TiO2 surfaces[J].J Mater Chem B, 2017, 5(18):3364-3376[30]Luu TU, Gott SC, Woo BW, et al.Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype[J].ACS Appl Mater Interfaces, 2015, 7(51):28665-28672[31]Jakobsen SS, Larsen A, Stoltenberg M, et al.Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages[J].Eur Cell Mater, 2007, 14:45-54[32]Chen X, Li HS, Yin Y, et al.Macrophage proinflammatory response to the titanium alloy equipment in dental implantation[J].Genet Mol Res, 2015, 14(3):9155-9162[33]Neacsu P, Gordin DM, Mitran V, et al.In vitro performance assessment of new beta Ti-Mo-Nb alloy compositions[J].Mater Sci Eng C Mater Biol Appl, 2015, 47:105-113[34]Lee CH, Kim YJ, Jang JH, et al.Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces[J].Nanotechnology, 2016, 27(8):085101-[35]Liu W, Golshan NH, Deng X, et al.Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation[J].Nanoscale, 2016, 8(34):15783-15794[36]Yao S, Feng X, Lu J, et al.Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes[J].Nanotechnology, 2018, 29(24):244003-[37]VilardellI AM, Cinca N, Garcia-Giralt N, et al.Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium[J].Mater Sci Eng C Mater Biol Appl, 2018, 87:41-49[38]Meirelles L, Arvidsson A, Andersson M, et al.Nano hydroxyapatite structures influence early bone formation[J].J Biomed Mater Res A, 2008, 87(2):299-307[39]Zhang Y, Chen Y, Kou H, et al.Enhanced bone healing in porous Ti implanted rabbit combining bioactive modification and mechanical stimulatio[J].J Mech Behav Biomed Mater, 2018, 86:336-344[40]He Y, Mu C, Shen X, et al.Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment[J].Acta Biomater, 2018, 80:412-424[41]Kazek-K?sik A, Pietryga K, Basiaga M, et al.Lactoferrin and collagen type I as components of composite formed on titanium alloys for bone replacement[J].Surf Coat Technol, 2017, 328:1-12[42]Bhardwaj G, Yazici H, Webster TJ.Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents[J].Nanoscale, 2015, 7(18):8416-8427[43]Jakobsen SS, Larsen A, Stoltenberg M, et al.Hydroxyapatite coatings did not increase TGF-beta and BMP-2 secretion in murine J774A.1 macrophages, but induced a pro-inflammatory cytokine response[J].J Biomater Sci Polym Ed, 2009, 20(4):455-465[44]Scislowska-Czarnecka A, Menaszek E, Szaraniec B, et al.Ceramic modifications of porous titanium: effects on macrophage activation[J].Tissue Cell, 2012, 44(6):391-400[45]Huang L, Luo Z, Hu Y, et al.Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants[J].J Biomed Mater Res A, 2016, 104(6):1437-1451[46]Mavrogenis AF, Dimitriou R, Parvizi J, et al.Biology of implant osseointegration[J].J Musculoskelet Neuronal Interact, 2009, 9(2):61-71 |