[1] |
Mohyeldin A, Garzón-Muvdi T, Qui?ones-Hinojosa A.Oxygen in stem cell biology: a critical component of the stem cell niche[J].Cell Stem Cell, 2010, 7(2):150-161
|
[2] |
Agata H, Sumita Y, Asahina I, et al.Ischemic culture of dental pulp-derived cells is a useful model in which to investigate mechanisms of post-ischemic tissue recovery[J].Histol Histopathol, 2013, 28(8):985-991
|
[3] |
Mangi AA, Noiseux N, Kong D, et al.Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts[J].Nat Med, 2003, 9(9):1195-201
|
[4] |
Yu CY, Boyd NM, Cringle SJ, et al.Oxygen distribution and consumption in rat lower incisor pulp[J].Arch Oral Biol, 2002, 47(7):529-536
|
[5] |
Agata H, Kagami H, Watanabe N, et al.Effect of ischemic culture conditions on the survival and differentiation of porcine dental pulp-derived cells[J].Differentiation, 2008, 76(9):981-993
|
[6] |
Mettraux GR, Gusberti FA, Graf H.Oxygen tension (pO2) in untreated human periodontal pockets[J].J Periodontol, 1984, 55(9):516-521
|
[7] |
Guzy RD, Schumacker PT.Oxygen sensing by mitochondria at complex III:the paradox of increased reactive oxygen species during hypoxia[J].Exp Physiol, 2016, 91(5):807-819
|
[8] |
刘庆娜,吴补领,陈婷,等.低氧预处理对人牙髓干细胞增殖和表达血管生成因子的影响[J].牙体牙髓牙周病学杂志, 2015, 25(2):68-72
|
[9] |
Li L, Zhu Y Q, Jiang L, et al.Hypoxia promotes mineralization of human dental pulp cells[J].J Endod, 2011, 37(6):799-802
|
[10] |
Iida K, Takeda-Kawaguchi T, Tezuka Y, et al.Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells[J].Arch Oral Biol, 2010, 55(9):648-654
|
[11] |
Gong Q, Quan J, Jiang H, et al.Regulation of the stromal cell–derived factor-1α–CXCR4 axis in human dental pulp cells[J].J Endod, 2010, 36(9):1499-1503
|
[12] |
Sakdee JB, White RR, Pagonis TC, et al.Hypoxia-amplified proliferation of human dental pulp cells[J].J Endod, 2009, 35(6):818-823
|
[13] |
Amemiya K, Kaneko Y, Muramatsu T, et al.Pulp cell responses during hypoxia and reoxygenation in vitro[J].Eur J Oral Sci, 2003, 111(4):332-338
|
[14] |
Kanafi MM, Ramesh A, Gupta PK, et al.Influence of hypoxia, high glucose, and low serum on the growth kinetics of mesenchymal stem cells from deciduous and permanent teeth[J].Cells Tissues Organs, 2013, 198(3):198-208
|
[15] |
Zhang QB, Zhang ZQ, Fang SL, et al.Effects of hypoxia on proliferation and osteogenic differentiation of periodontal ligament stem cells: an in vitro and in vivo study[J].Genet Mol Res, 2014, 13(4):10204-10214
|
[16] |
Dai Y, He H, Wise GE, et al.Hypoxia promotes growth of stem cells in dental follicle cell populations[J].J Biomed Sci Eng, 2011, 4(6):454-461
|
[17] |
Zhou Y, Fan W, Xiao Y.The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC[J].Biomed Res Int, 2014, 2014:890675-
|
[18] |
Vanacker J, Viswanath A, De Berdt P, et al.Hypoxia modulates the differentiation potential of stem cells of the apical papilla[J].J Endod, 2014, 40(9):1410-1418
|
[19] |
Wang J, Wei X, Ling J, et al.Side population increase after simulated transient ischemia in human dental pulp cell[J].J Endod, 2010, 36(3):453-458
|
[20] |
Wu Y, Yang Y, Yang P, et al.The osteogenic differentiation of PDLSCs is mediated through MEKERK and p38 MAPK signalling under hypoxia[J].Arch Oral Biol, 2013, 58(10):1357-1368
|
[21] |
Zhao L, Wu Y, Tan L, et al.Coculture with endothelial cells enhances osteogenic differentiation of periodontal ligament stem cells via cyclooxygenase-2/prostaglandin E2/vascular endothelial growth factor signaling under hypoxia[J].J Periodontal, 2013, 84(12):1847-1857
|
[22] |
Choi H, Jin H, Kim J Y, et al.Hypoxia promotes CEMP1 expression and induces cementoblastic differentiation of human dental stem cells in an HIF-1-dependent manner[J].Tissue Eng Part A, 2014, 20(1/2):410-423
|
[23] |
Wu Y, Cao H, Yang Y, et al.Effects of vascular endothelial cells on osteogenic differentiation of noncontact co-cultured periodontal ligament stem cells under hypoxia[J].J Periodontal Res, 2013, 48(1):52-65
|
[24] |
侯建霞, Loomer PM.低氧对人牙周膜干细胞骨向分化影响的实验研究[J].中华口腔医学杂志, 2009, 44(9):543-547
|
[25] |
Fujio M, Xing Z, Sharabi N, et al.Conditioned media from hypoxic-cultured human dental pulp cells promotes bone healing during distraction osteogenesis[J].J Tissue Eng Regen Med, 2017, 11(7):2116-2126
|
[26] |
Aranha AM, Zhang Z, Neiva KG, et al.Hypoxia enhances the angiogenic potential of human dental pulp cells[J].J Endod, 2010, 36(10):1633-1637
|
[27] |
Ribatti D.The crucial role of vascular permeability factor vascular endothelial growth factor in angiogenesis: a historical review[J].Br J Haematol, 2005, 128(3):303-309
|
[28] |
Jin W, Liang X, Brooks A, et al.Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice[J].PeerJ, 2018, 6:e6072-
|
[29] |
Semenza GL.Hypoxia-inducible factor 1: Regulator of mitochondrial etabolism and mediator of ischemic preconditioning[J].Biochim Biophys Acta, 2011, 1813(7):1263-1268
|
[30] |
Mazumdar J, Dondeti V, Simon M C.Hypoxia-inducible factors in stem cells and cancer[J].J Cell Mol Med, 2009, 13(11-12):4319-4328
|
[31] |
Kuang R, Zhang Z, Jin X, et al.Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp[J].Acta Biomater, 2016, (33):225-234
|
[32] |
Gorin C, Rochefort GY, Bascetin R, et al.Priming dental pulp stem cells with fibroblast growth factor-2 increases angiogenesis of implanted tissue-engineered constructs through hepatocyte growth factor and vascular endothelial growth factor secretion[J].Stem Cell Transl Med, 2016, 5(3):392-404
|
[33] |
付洪海,李鹏翀,赵莉,等.HIF-1α基因修饰的牙髓干细胞成血管的体外研究[J].上海口腔医学, 2015, 24(6):674-678
|
[34] |
邢文,杨少光,韩之波,等.常氧培养与低氧培养肺间充质细胞凋亡的比较[J].中国组织工程研究与临床康复, 2010, 14(49):9253-9256
|
[35] |
Haque N, Rahman MT, Abu Kasim NH, et al.Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy[J].Scientific World J, 2013, 2013:632972-
|
[36] |
Sena LA, Chandel NS.Physiological roles of mitochondrial reactive oxygen species[J].Mol Cell, 2012, 48(2):158-67
|
[37] |
Mazure NM, Pouysségur J.Hypoxia-induced autophagy: cell death or cell survival?[J].Curr Opin Cell Biol, 2010, 22(2):177-180
|
[38] |
Zhou Q, Liu H, Sun Q, et al.Adenosine monophosphate-activated protein kinasemammalian target of rapamycin-dependent autophagy protects human dental pulp cells against hypoxia[J].J Endod, 2013, 39(6):768-773
|
[39] |
张萍,李诚,余波.低氧预处理及AMPK过表达对过氧化氢抑制牙髓细胞增殖影响的研究[J].牙体牙髓牙周病学杂志, 2014, 24(7):385-389
|
[40] |
Inoki K,Kim J,Guan KL.AMPK and mTOR in cellular energy homeostasis and drug targets[J].Annu Rev Pharmaeol Toxicol, 2012, 52:381-400
|
[41] |
Fukuyama Y, Ohta K, Okoshi R, et al.Hypoxia induces expression and activation of AMPK in rat dental pulp cells[J].J Dent Res, 2007, 86(9):903-907
|
[42] |
尉娜,王建平,路坦.缺氧活化AMPK/mTOR通路对脑血管内皮细胞增殖及代谢的影响[J].中国老年学杂志, 2014, 34(3):1283-1285
|
[43] |
Blagosklonny MV.Hypoxia, MTOR and autophagy: converging on senescence or quiescence[J].Autophagy, 2013, 9(2):260-262
|
[44] |
Bellot G, Garcia-Medina R, Gounon P, et al.Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains[J].Mol Cell Biol, 2009, 29(10):2570-2581
|
[45] |
Scherz-Shouval R, Elazar Z.Regulation of autophagy by ROS: physiology and pathology[J].Trends Biochem Sci, 2011, 36(1):30-38
|