[1] |
Langer R, Vacanti JP.Tissue engineering[J].Science, 1993, 260(5110):920-926
|
[2] |
Langer R, Vacanti JP, Vacanti CA, et al.Tissue engineering: biomedical applications[J].Tissue Eng, 1995, 1(2):151-161
|
[3] |
Cima LG, Vacanti JP, Vacanti C, et al.Tissue engineering by cell transplantation using degradable polymer substrates[J].J Biomech Eng, 1991, 113(2):143-151
|
[4] |
Liu S, Liu D, Chen C, et al.MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus[J].Cell Metab, 2015, 22(4):606-618
|
[5] |
El Agha E, Kramann R, Schneider RK, et al.Mesenchymal Stem Cells in Fibrotic Disease[J].Cell Stem Cell, 2017, 21(2):166-177
|
[6] |
Moussa L, Pattappa G, Doix B, et al.A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage[J].Biomaterials, 2017, 115:40-52
|
[7] |
Lv YJ, Yang Y, Sui BD, et al.Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice[J].Theranostics, 2018, 8(9):2387-2406
|
[8] |
Li L, Liu W, Wang H, et al.Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J].Cell Death Dis, 2018, 9(5):480-
|
[9] |
Shi Y, Hu G, Su J, et al.Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair[J].Cell Res, 2010, 20(5):510-518
|
[10] |
Cao W, Cao K, Cao J, et al.Mesenchymal stem cells and adaptive immune responses[J].Immunol Lett, 2015, 168(2):147-153
|
[11] |
Shi Y, Wang Y, Li Q, et al.Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J].Nat Rev Nephrol, 2018, 14(8):493-507
|
[12] |
Agrahari V, Agrahari V, Burnouf PA, et al.Extracellular Microvesicles as New Industrial Therapeutic Frontiers[J].Trends Biotechnol, 2019, 37(7):707-729
|
[13] |
Wiklander OPB, Brennan Má, L?tvall J, et al.Advances in therapeutic applications of extracellular vesicles[J].Sci Transl Med, 2019, 11(492):eaav8521-
|
[14] |
Ankrum J, Karp JM.Mesenchymal stem cell therapy: Two steps forward, one step back[J].Trends Mol Med, 2010, 16(5):203-209
|
[15] |
Bernardo ME, Fibbe WE.Mesenchymal stromal cells: sensors and switchers of inflammation[J].Cell Stem Cell, 2013, 13(4):392-402
|
[16] |
Takahashi A, Okada R, Nagao K, et al.Exosomes maintain cellular homeostasis by excreting harmful DNA from cells[J].Nat Commun, 2017, 8:15287-
|
[17] |
Malhotra H, Sheokand N, Kumar S, et al.Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment[J].J Biomed Nanotechnol, 2016, 12(5):1101-1114
|
[18] |
Liu D, Kou X, Chen C, et al.Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors[J].Cell Res, 2018, 28(9):918-933
|
[19] |
Chen X, Wong R, Khalidov I, et al.Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation[J].Biomaterials, 2011, 32(30):7651-7661
|
[20] |
Parodi A, Quattrocchi N, van de Ven AL, et al.Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions[J].Nat Nanotechnol, 2013, 8(1):61-68
|
[21] |
Thamphiwatana S, Angsantikul P, Escajadillo T, et al.Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J].Proc Natl Acad Sci U S A, 2017, 114(43):11488-11493
|
[22] |
Wang Q, Ren Y, Mu J, et al.Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites[J].Cancer Res, 2015, 75(12):2520-2529
|
[23] |
Sun H, Su J, Meng Q, et al.Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J].Adv Mater, 2016, 28(43):9581-9588
|
[24] |
Hu CM, Fang RH, Wang KC, et al.Nanoparticle biointerfacing by platelet membrane cloaking[J].Nature, 2015, 526(7571):118-121
|
[25] |
Song H, Li X, Zhao Z, et al.Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes[J].Nano Lett, 2019, 19(5):3040-3048
|
[26] |
Yang X, Yang J, Lei P,et al.LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis[J].Aging, 2019, 11(20):8777-8791
|
[27] |
Liu W, Li L, Rong Y, et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J].Acta Biomater, 2019, 103:196-212
|
[28] |
Zhao J, Li X, Hu J, et al.Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J].Cardiovasc Res, 2019, 115(7):1205-1216
|
[29] |
Song Y, Li Z, He T, et al.M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J].Theranostics, 2019, 9(10):2910-2923
|
[30] |
Wu J, Dong T, Chen T, et al.Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J].Metabolism, 2019, 103:154006-
|
[31] |
Jiang F, Chen Q, Wang W, et al.Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1[J].J Hepatol, 2020, 72(1):156-166
|
[32] |
Sundaram K, Miller DP, Kumar A, et al.Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis[J].21:308-327, 2019, 21:308-327
|
[33] |
Yao X, Wei W, Wang X, et al.Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders[J].Biomaterials, 2019, 224:119492-
|
[34] |
Henriques-Antunes H, Cardoso RMS, Zonari A, et al.The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration[J].ACS Nano, 2019, 13:8694-8707
|
[35] |
Cao LQ, Yang XW, Chen YB, et al.Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth[J].Mol Cancer, 2019, 18(1):148-
|
[36] |
Jiang K, Yang J, Guo S, et al.Peripheral Circulating Exosome-Mediated Delivery of miR-155 as a Novel Mechanism for Acute Lung Inflammation[J].Mol Ther, 2019, 27(10):1758-1771
|
[37] |
Wan L, Xia T, Du Y, et al.Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells[J].FASEB J, 2019, 33(7):8530-8542
|
[38] |
Min L, Zhu S, Chen L, et al.Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs[J].J Extracell Vesicles, 2019, 8(1):1643670-
|
[39] |
Jia L, Qiu Q, Zhang H, et al.Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J].Alzheimers Dement, 2019, 15(8):1071-1080
|
[40] |
Sherif AY, Harisa GI, Alanazi FK, et al.Engineering of Exosomes: Steps Towards Green Production of Drug Delivery System[J].Curr Drug Targets, 2019, 20(15):1537-1549
|
[41] |
Lee J, Lee H, Goh U, et al.Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles[J].ACS Appl Mater Interfaces, 2016, 8(11):6790-6795
|
[42] |
Bose RJC, Uday Kumar S, Zeng Y, et al.Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents[J].ACS Nano, 2018, 12(11):10817-10832
|
[43] |
Zhai Y, Su J, Ran W, et al.Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy[J].Theranostics, 2017, 7(10):2575-2592
|
[44] |
Watson DC, Bayik D, Srivatsan A, et al.Efficient production and enhanced tumor delivery of engineered extracellular vesicles[J].Biomaterials, 2016, 105:195-205
|
[45] |
Fan Z, Xiao K, Lin J, et al.Functionalized DNA Enables Programming Exosomes/Vesicles for Tumor Imaging and Therapy[J].Small, 2019, 15(47):e1903761-
|
[46] |
Yong T, Zhang X, Bie N, et al.Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy[J].Nat Commun, 2019, 10(1):3838-
|
[47] |
Hu Q, Sun W, Qian C, et al.Anticancer Platelet-Mimicking Nanovehicles[J].Adv Mater, 2015, 27(44):7043-7050
|
[48] |
Wang D, Dong H, Li M, et al.Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma[J].ACS Nano, 2018, 12(6):5241-5252
|
[49] |
Zhang W, Yu ZL, Wu M, et al.Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles[J].ACS Nano, 2017, 11(1):277-290
|
[50] |
Shen S, Li Y, Xiao Y, et al.Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion[J].Biomaterials, 2018, 181:293-306
|
[51] |
Shen MY, Liu TI, Yu TW, et al.Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer[J].Biomaterials, 2019, 197:86-100
|
[52] |
Zheng Z, Li Z, Xu C, et al.Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping[J].J Control Release, 2019, 311/312:43-49
|
[53] |
Pi F, Binzel DW, Lee TJ, et al.Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J].Nat Nanotechnol, 2018, 13(1):82-89
|
[54] |
Qi H, Liu C, Long L, et al.Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy[J].ACS Nano, 2016, 10(3):3323-3333
|
[55] |
Lin Q, Qu M, Zhou B, et al.Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine[J].J Control Release, 2019, 311/312:104-116
|
[56] |
Haney MJ, Suresh P, Zhao Y, et al.Blood-borne macrophage-neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery[J].Nanomedicine, 2012, 7(6):815-833
|
[57] |
Fan K, Jia X, Zhou M, et al.Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma[J].ACS Nano, 2018, 12(5):4105-4115
|
[58] |
Yang T, Fogarty B, LaForge B, et al.Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer[J].AAPS J, 2017, 19(2):475-486
|
[59] |
Yuan D, Zhao Y, Banks WA, et al.Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain[J].Biomaterials, 2017, 142:1-12
|
[60] |
Alvarez-Erviti L, Seow Y, Yin H, et al.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J].Nat Biotechnol, 2011, 29(4):341-345
|
[61] |
Pusic AD, Pusic KM, Clayton BL, et al.IFNgamma-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J].J Neuroimmunol, 2014, 266(1/2):12-23
|
[62] |
Tang TT, Lv LL, Wang B, et al.Employing Macrophage-Derived Microvesicle for Kidney-Targeted Delivery of Dexamethasone: An Efficient Therapeutic Strategy against Renal Inflammation and Fibrosis[J].Theranostics, 2019, 9(16):4740-4755
|
[63] |
Guo S, Perets N, Betzer O, et al.Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury[J].ACS Nano, 2019, 13(9):10015-10028
|
[64] |
Wang M, Wang C, Chen M, et al.Efficient Angiogenesis-Based Diabetic Wound Healing/Skin Reconstruction through Bioactive Antibacterial Adhesive Ultraviolet Shielding Nanodressing with Exosome Release[J].ACS Nano, 2019, 13(9):10279-10293
|
[65] |
Mentkowski KI, Lang JK.Exosomes Engineered to Express a Cardiomyocyte Binding Peptide Demonstrate Improved Cardiac Retention in Vivo[J].Sci Rep, 2019, 9(1):10041-
|
[66] |
Vandergriff A, Huang K, Shen D, et al.Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J].Theranostics, 2018, 8(7):1869-1878
|
[67] |
Tapparo M, Bruno S, Collino F, et al.Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells[J].Int J Mol Sci, 2019, 20(10):E2381-
|
[68] |
Pizzicannella J, Gugliandolo A, Orsini T, et al.Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration[J].Front Physiol, 2019, 10:512-
|
[69] |
Cunnane EM, Weinbaum JS, O'Brien FJ, et al.Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration[J].Front Cardiovasc Med, 2018, 5:86-
|
[70] |
Wang X, Chen Y, Zhao Z, et al.Engineered Exosomes With Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction[J].J Am Heart Assoc, 2018, 7(15):e008737-
|
[71] |
Dai X, Medzhitov R.Inflammation: Memory beyond immunity[J].Nature, 2017, 550(7677):460-461
|
[72] |
Kolb JP, Oguin TH 3rd, Oberst A, et al.Programmed Cell Death and Inflammation: Winter Is Coming[J].Trends Immunol, 2017, 38(10):705-718
|
[73] |
Janakiraman K, Krishnaswami V, Sethuraman V, et al.Development of Methotrexate and Minocycline Loaded Nanoparticles for the Effective Treatment of Rheumatoid Arthritis[J].AAPS PharmSciTech, 2019, 21(2):34-
|
[74] |
Zhang Q, Dehaini D, Zhang Y, et al.Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J].Nat Nanotechnol, 2018, 13(12):1182-1190
|
[75] |
Li R, He Y, Zhu Y, et al.Route to Rheumatoid Arthritis by Macrophage-Derived Microvesicle-Coated Nanoparticles[J].Nano Lett, 2019, 19(1):124-134
|
[76] |
Alam MT, Amos GCA, Murphy ARJ, et al.Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels[J].Gut Pathog, 2020, 12:1-
|
[77] |
Kaplan GG.The global burden of IBD: from 2015 to 2025[J].Nat Rev Gastroenterol Hepatol, 2015, 12(12):720-727
|
[78] |
Liu H, Liang Z, Wang F, et al.Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J].JCI Insight, 2019, 4(24):131273-
|
[79] |
Yu L, Yang F, Jiang L, et al.Exosomes with membrane-associated TGF-beta1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction[J].Eur J Immunol, 2013, 43(9):2461-2472
|
[80] |
Zhao H, Shang Q, Pan Z, et al.Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue[J].Diabetes, 2018, 67(2):235-247
|
[81] |
Kim H, Wang SY, Kwak G, et al.Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing[J].Adv Sci, 2019, 6(20):1900513-
|
[82] |
Frodermann V, Rohde D, Courties G, et al.Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells[J].Nat Med, 2019, 25(11):1761-1771
|
[83] |
Cutarelli A, Ghio S, Zasso J, et al.Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors[J].Cells, 2019, 9(1):E88-
|
[84] |
Boo L, Yeap SK, Ali NM, et al.Phenotypic and microRNA characterization of the neglected CD24+ cell population in MCF-7 breast cancer 3-dimensional spheroid culture[J].J Chin Med Assoc, 2020, 83(1):67-76
|
[85] |
Tian Y, Gong M, Hu Y, et al.Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry[J].J Extracell Vesicles, 2020, 9(1):1697028-
|