口腔生物医学 ›› 2022, Vol. 13 ›› Issue (2): 120-124.
唐慧琳,邱韬,郭维华
收稿日期:
2022-03-08
修回日期:
2022-04-18
出版日期:
2022-06-25
发布日期:
2022-07-07
通讯作者:
郭维华
E-mail:guoweihua943019@163.com
基金资助:
Received:
2022-03-08
Revised:
2022-04-18
Online:
2022-06-25
Published:
2022-07-07
摘要: 利用组织工程的方法实现牙及其支持组织再生是近年来的研究热点,三维生物打印技术具有个性化、高精度及低损耗等优势,作为三维生物打印基础材料的生物墨水可直接搭载细胞和生长因子,为组织工程牙再生提供了新的思路。本文从三维生物打印技术的原理及分类、用于牙相关结构三维生物打印的细胞、材料和生长因子以及三维生物打印技术在牙再生中的应用等方面进行综述。
唐慧琳 邱韬 郭维华. 三维生物打印技术在牙再生中的研究进展[J]. 口腔生物医学, 2022, 13(2): 120-124.
[1] | Obregon, F., C. Vaquette and S. Ivanovski, et al., Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering [J]. J Dent Res, 2015, 94(9_suppl):143S-152S. |
[2] | Zhang, Y. D., Z. Chen and Y. Q. Song, et al., Making a tooth: growth factors, transcription factors, and stem cells [J]. Cell Res, 2005, 15(5):301-16. |
[3] | Vijayavenkataraman, S., W. Yan and W. F. Lu, et al., 3D bioprinting of tissues and organs for regenerative medicine [J]. Adv Drug Deliver Rev, 2018, 132:296-332. |
[4] | Kang, H., S. J. Lee and I. K. Ko, et al., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity [J]. Nat Biotechnol, 2016, 34(3):312-319. |
[5] | Lee, A., A. R. Hudson and D. J. Shiwarski, et al., 3D bioprinting of collagen to rebuild components of the human heart [J]. Science, 2019, 365(6452):482-487. |
[6] | Hull CW. Apparatus for production of three-dimensional objects by stereolithography. US: 4575330 [P], 1986-03-11. |
[7] | Guillemot, F., V. Mironov and M. Nakamura, Bioprinting is coming of age: Report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09) [J]. Biofabrication, 2010, 2(1):010201. |
[8] | Derby, B., Printing and Prototyping of Tissues and Scaffolds [J]. Science, 2012, 338(6109):921-926. |
[9] | Gu, Z., J. Fu and H. Lin, et al., Development of 3D bioprinting: From printing methods to biomedical applications [J]. Asian J Pharm Sci, 2020, 15(5):529-557. |
[10] | Ozbolat, I. T. and M. Hospodiuk, Current advances and future perspectives in extrusion-based bioprinting [J]. Biomaterials, 2016, 76:321-343. |
[11] | Gillispie, G., P. Prim and J. Copus, et al., Assessment methodologies for extrusion-based bioink printability [J]. Biofabrication, 2020, 12(2):022003. |
[12] | Li, X., B. Liu and B. Pei, et al., Inkjet Bioprinting of Biomaterials [J]. Chem Rev, 2020, 120(19):10793-10833. |
[13] | Dudman, J., A. M. Ferreira and P. Gentile, et al., Reliable inkjet printing of chondrocytes and MSCs using reservoir agitation [J]. Biofabrication, 2020, 12(4):045024. |
[14] | Hakobyan, D., C. Medina and N. Dusserre, et al., Laser-assisted 3D bioprinting of exocrine pancreas spheroid models for cancer initiation study [J]. Biofabrication, 2020, 12(3):035001. |
[15] | Huh, J., Y. W. Moon and J. Park, et al., Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting [J]. Biofabrication, 2021, 13(3). |
[16] | Gronthos, S., M. Mankani and J. Brahim, et al., Postnatal Human Dental Pulp Stem Cells (DPSCs) In vitro and In vivo [J]. Proceedings of the National Academy of Sciences - PNAS, 2000, 97(25):13625-13630. |
[17] | Mattei, V., S. Martellucci and F. Pulcini, et al., Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? [J]. Stem Cell Rev Rep, 2021. |
[18] | Khayat, A., N. Monteiro and E. E. Smith, et al., GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration [J]. J Dent Res, 2016, 96(2):192-199. |
[19] | Miura, M., S. Gronthos and M. Zhao, et al., SHED: stem cells from human exfoliated deciduous teeth [J]. Proc Natl Acad Sci U S A, 2003, 100(10):5807-12. |
[20] | Xuan, K., B. Li and H. Guo, et al., Deciduous autologous tooth stem cells regenerate dental pulp after implantation into injured teeth [J]. Sci Transl Med, 2018, 10(455). |
[21] | Yang, X., Y. Ma and W. Guo, et al., Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration [J]. Theranostics, 2019, 9(9):2694-2711. |
[22] | Sonoyama, W., Y. Liu and D. Fang, et al., Mesenchymal stem cell-mediated functional tooth regeneration in swine [J]. Plos One, 2006, 1:e79. |
[23] | Kang, J., W. Fan and Q. Deng, et al., Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy [J]. Biomed Res Int, 2019, 2019:1-8. |
[24] | Morsczeck, C., W. G?tz and J. Schierholz, et al., Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth [J]. Matrix Biol, 2005, 24(2):155-165. |
[25] | Guo, W., Y. He and X. Zhang, et al., The use of dentin matrix scaffold and dental follicle cells for dentin regeneration [J]. Biomaterials, 2009, 30(35):6708-6723. |
[26] | Guo, W., L. Chen and K. Gong, et al., Heterogeneous Dental Follicle Cells and the Regeneration of Complex Periodontal Tissues [J]. Tissue Engineering Part A, 2012, 18(5-6):459-470. |
[27] | Seo, B. M., M. Miura and S. Gronthos, et al., Investigation of multipotent postnatal stem cells from human periodontal ligament [J]. Lancet, 2004, 364(9429):149-55. |
[28] | Park, C. H., H. F. Rios and Q. Jin, et al., Tissue engineering bone-ligament complexes using fiber-guiding scaffolds [J]. Biomaterials, 2012, 33(1):137-145. |
[29] | Yamada, Y., S. Nakamura and K. Ito, et al., A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology [J]. Tissue Eng Part A, 2010, 16(6):1891-900. |
[30] | Brizuela, C., G. Meza and D. Urrejola, et al., Cell-Based Regenerative Endodontics for Treatment of Periapical Lesions: A Randomized, Controlled Phase I/II Clinical Trial [J]. J Dent Res, 2020, 99(5):523-529. |
[31] | Chen, H., H. Fu and X. Wu, et al., Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a(+) stem cells [J]. Sci Adv, 2020, 6(15):eaay1514. |
[32] | Ma, Y., L. Xie and B. Yang, et al., Three‐dimensional printing biotechnology for the regeneration of the tooth and tooth‐supporting tissues [J]. Biotechnol Bioeng, 2018, 116(2):452-468. |
[33] | Rastogi, P. and B. Kandasubramanian, Review of alginate-based hydrogel bioprinting for application in tissue engineering [J]. Biofabrication, 2019, 11(4):042001. |
[34] | Unagolla, J. M. and A. C. Jayasuriya, Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives [J]. Applied Materials Today, 2020, 18:100479. |
[35] | Dubey, N., J. A. Ferreira and A. Daghrery, et al., Highly tunable bioactive fiber-reinforced hydrogel for guided bone regeneration [J]. Acta Biomater, 2020, 113:164-176. |
[36] | Kim, B. S., S. Das and J. Jang, et al., Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments [J]. Chem Rev, 2020, 120(19):10608-10661. |
[37] | Zhang, X., Y. Liu and C. Luo, et al., Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering [J]. Materials Science and Engineering: C, 2021, 118:111388. |
[38] | Athirasala, A., A. Tahayeri and G. Thrivikraman, et al., A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry [J]. Biofabrication, 2018, 10(2):024101-024101. |
[39] | Park, J. H., G. J. Gillispie and J. S. Copus, et al., The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs [J]. Biofabrication, 2020, 12(3):035029. |
[40] | Chen, R., S. Hsu and H. Chang, et al., Challenge Tooth Regeneration in Adult Dogs with Dental Pulp Stem Cells on 3D-Printed Hydroxyapatite/Polylactic Acid Scaffolds [J]. Cells-Basel, 2021, 10(12):3277. |
[41] | Park, C., K. Kim and Y. Lee, et al., 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures [J]. Int J Mol Sci, 2017, 18(9):1927. |
[42] | Lin, H., P. G. Chao and W. Tai, et al., 3D-Printed Collagen-Based Waveform Microfibrous Scaffold for Periodontal Ligament Reconstruction [J]. Int J Mol Sci, 2021, 22(14):7725. |
[43] | Lee, U., S. Yun and H. Cao, et al., Bioprinting on 3D Printed Titanium Scaffolds for Periodontal Ligament Regeneration [J]. Cells-Basel, 2021, 10(6):1337. |
[44] | Nakao, K., R. Morita and Y. Saji, et al., The development of a bioengineered organ germ method [J]. Nat Methods, 2007, 4(3):227-230. |
[45] | Smith, E. E., S. Angstadt and N. Monteiro, et al., Bioengineered Tooth Buds Exhibit Features of Natural Tooth Buds [J]. J Dent Res, 2018, 97(10):1144-1151. |
[46] | Monteiro, N., E. E. Smith and S. Angstadt, et al., Dental cell sheet biomimetic tooth bud model [J]. Biomaterials, 2016, 106:167-179. |
[1] | 葛雅能 田卫东. Hertwig’s上皮根鞘与牙囊共培养细胞膜片的构建及初步研究[J]. 口腔生物医学, 2022, 13(2): 92-95. |
[2] | 谢利 阳婷 张锐涛 张清源 田卫东. 载细胞微球在牙髓再生研究中的进展及展望[J]. 口腔生物医学, 2021, 12(4): 267-272. |
[3] | 孙一丹 马欲杰 王婧 魏欣 韩冰. 3D打印磷酸钙改性PLGA乳液复合支架的研究[J]. 口腔生物医学, 2021, 12(2): 115-119. |
[4] | 王思青 王晴晴 刘玉 苗雷英 孙卫斌. 电纺聚己内酯/ I型胶原蛋白/纳米锆酸钙复合支架的制备及其生物相容性的研究[J]. 口腔生物医学, 2021, 12(1): 21-25. |
[5] | 吴博昊 安莹. 牙周膜干细胞在牙周组织再生中的研究新进展[J]. , 2020, 11(4): 270-276. |
[6] | 窦庚 刘世宇 金岩. 细胞外囊泡在组织工程研究中的新应用[J]. , 2020, 11(1): 1-8. |
[7] | 李娜 章非敏. 多巴胺与Ⅰ型胶原对MC3T3-E1细胞初期粘附形态的影响[J]. , 2018, 9(4): 187-190. |
[8] | 郑奥 曹玲燕 刘阳 吴建楠 蒋欣泉. 石墨烯/PLGA复合支架对骨髓间充质干细胞增殖和分化能力的影响[J]. , 2018, 9(2): 58-62. |
[9] | 李道伟 史册 张雪 胡月 赵欢 倪世磊 孙宏晨. 载EPO仿生Gel/HA纳米纤维促骨再生研究[J]. , 2017, 8(3): 117-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||