[1] |
Wadhwa S, Kapila S.TMJ disorders: future innovations in diagnostics and therapeutics[J].J Dent Educ, 2008, 72(8):930-947
|
[2] |
LeResche L.Epidemiology of temporomandibular disorders: implications for the investigation of etiologic factors[J].Crit Rev Oral Biol Med, 1997, 8(3):291-305
|
[3] |
Mujakperuo HR, Watson M, Morrison R, et al.Pharmacological interventions for pain in patients with temporomandibular disorders[J].Cochrane Database Syst Rev, 2010, (10):CD004715-
|
[4] |
H?ggman-Henrikson B, Alstergren P, Davidson T, et al.Pharmacological treatment of oro-facial pain - health technology assessment including a systematic review with network meta-analysis[J].J Oral Rehabil, 2017, 44(10):800-826
|
[5] |
Kimos P, Biggs C, Mah J, et al.Analgesic action of gabapentin on chronic pain in the masticatory muscles: a randomized controlled trial[J].Pain, 2007, 127(12):151-160
|
[6] |
Soyannwo OA.Improved neuropathic pain treatment in developing countries--a critical review of WHO essential list[J].Pain, 2015, 156(5):763-764
|
[7] |
Descalzi G, Ikegami D, Ushijima T, et al.Epigenetic mechanisms of chronic pain[J].Trends Neurosci, 2015, 38(4):237-246
|
[8] |
Nielsen CS, Knudsen GP, Steingrímsdóttir óA.Twin studies of pain[J].Clin Genet, 2012, 82(4):331-340
|
[9] |
Smith SB, Maixner DW, Greenspan JD, et al.Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study[J].J Pain, 2011, 12(11):T92-T101
|
[10] |
Meng H, Gao Y, Kang YF, et al.Molecular Changes Involving MEK3-p38 MAPK Activation in Chronic Masticatory Myalgia[J].J Dent Res, 2016, 95(10):1169-1175
|
[11] |
Inoue T, Hammaker D, Boyle DL, et al.Regulation of p38 MAPK by MAPK kinases 3 and 6 in fibroblast-like synoviocytes[J].J Immunol, 2005, 174(7):4301-4306
|
[12] |
Sorkin LS, Boyle DL, Hammaker D, et al.MKK3,an upstream activator of p38,contributes to formalin phase 2 and late allodynia in mice[J].Neuroscience, 2009, 162(2):462-471
|
[13] |
Bracken CP, Gregory PA, Khew-Goodall Y, et al.The role of microRNAs in metastasis and epithelial-mesenchymal transition[J].Cell Mol Life Sci, 2009, 66(10):1682-1699
|
[14] |
Simonson B, Das S.MicroRNA Therapeutics: the Next Magic Bullet?[J].Mini Rev Med Chem, 2015, 15(6):467-474
|
[15] |
Bartel DP.MicroRNAs: genomics, biogenesis, mechanism, and function[J].Cell, 2004, 116(2):281-297
|
[16] |
Schiffman E, Ohrbach R, Truelove E, et al.Diagnostic Criteria for Temporomandibular Disorders (DCTMD) for Clinical and Research Applications: recommendations of the International RDCTMD Consortium Network* and Orofacial Pain Special Interest Groupdagger[J].J Oral Facial Pain Headache, 2014, 28(1):6-27
|
[17] |
Uceyler N, Riediger N, Kafke W, et al.Differential gene expression of cytokines and neurotrophic factors in nerve and skin of patients with peripheral neuropathies[J].J Neurol, 2015, 262(1):203-212
|
[18] |
Renton T.Chronic orofacial pain[J].Oral Dis, 2017, 23(5):566-571
|
[19] |
Dworkin RH, O' Connor AB, Kent J, et al.Interventional management of neuropathic pain: NeuPSIG recommendations[J].Pain, 2013, 154(11):2249-2261
|
[20] |
Tsuchiya S, Yamabe M, Yamaguchi Y, et al.Establishment and characterization of a human acute monocytic leukemia cell line (THP-1)[J].Int J Cancer, 1980, 26(2):171-176
|
[21] |
Mangan DF, Wahl SM.Differential regulation of human monocyte programmed cell death (apoptosis) by chemotactic factors and pro-inflammatory cytokines[J].J Immunol, 1991, 147(10):3408-3412
|
[22] |
Qin Z.The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature[J].Atherosclerosis, 2012, 221(1):2-11
|
[23] |
Miao F, Wu X, Zhang L, et al.Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes[J].J Biol Chem, 2007, 282(18):13854-13863
|
[24] |
Li LM, Hou DX, Guo YL, et al.Role of microRNA-214-targeting phosphatase and tensin homolog in advanced glycation end product-induced apoptosis delay in monocytes[J].J Immunol, 2011, 186(4):2552-2560
|
[25] |
Keuper M, Dzyakanchuk A, Amrein K E, et al.THP-1 Macrophages and SGBS Adipocytes - A New Human in vitro Model System of Inflamed Adipose Tissue[J].Front Endocrinol (Lausanne), 2011, 2:89-
|
[26] |
Chanput W, Mes JJ, Wichers HJ.THP-1 cell line: an in vitro cell model for immune modulation approach[J].Int Immunopharmacol, 2014, 23(1):37-45
|
[27] |
Sand M, Hessam S, Amur S, et al.Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma[J].J Dermatol Sci, 2017, 86(2):142-148
|
[28] |
Mogilyansky E, Rigoutsos I.The miR-1792 cluster: a comprehensive update on its genomics,genetics,functions and increasingly important and numerous roles in health and disease[J].Cell Death Differ, 2013, 20(12):1603-1614
|
[29] |
Wang W, Zhang A, Hao Y, et al.The emerging role of miR-19 in glioma[J].J Cell Mol Med, 2018, 22(10):4611-4616
|
[30] |
Sun J, Jia Z, Li B, et al.MiR-19 regulates the proliferation and invasion of glioma by RUNX3 via β-catenin/Tcf-4 signaling[J].Oncotarget, 2017, 8(67):110785-110796
|
[31] |
Li X, Teng C, Ma J, et al.miR-19 family: A promising biomarker and therapeutic target in heart, vessels and neurons[J].Life Sci, 2019, 232:116651-
|
[32] |
Han J, Kim HJ, Schafer ST, et al.Functional Implications of miR-19 in the Migration of Newborn Neurons in the Adult Brain[J].Neuron, 2016, 91(1):79-89
|
[33] |
Liu XS, Chopp M, Wang XL, et al.MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke[J].J Biol Chem, 2013, 288(18):12478-12488
|
[34] |
Dhiraj DK, Chrysanthou E, Mallucci GR, et al.miRNAs-19b,-29b-2* and -339-5p show an early and sustained up-regulation in ischemic models of stroke[J].PLoS One, 2013, 8(12):e83717-
|
[35] |
Sakai A, Saitow F, Maruyama M, et al.MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain[J].Nat Commun, 2017, 8:16079-
|
[36] |
Zhao X, Jin Y, Li H, et al.Sevoflurane impairs learning and memory of the developing brain through post-transcriptional inhibition of CCNA2 via microRNA-19-3p[J].Aging, 2018, 10(12):3794-3805
|
[37] |
Wu Y, Xu J, Xu J, et al.Lower Serum Levels of miR-29c-3p and miR-19b-3p as Biomarkers for Alzheimer's Disease[J].Tohoku J Exp Med, 2017, 242(2):129-136
|
[38] |
Gui Y, Liu H, Zhang L, et al.Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease[J].Oncotarget, 2015, 6(35):37043-37053
|
[39] |
Debnath T, Deb Nath NC, Kim EK, et al.Role of phytochemicals in the modulation of miRNA expression in cancer[J].Food Funct, 2017, 8(10):3432-3442
|
[40] |
Bartel DP.MicroRNAs: target recognition and regulatory functions[J].Cell, 2009, 136(2):215-233
|
[41] |
He L, Thomson JM, Hemann MT, et al.A microRNA polycistron as a potential human oncogene[J].Nature, 2005, 435(7043):828-833
|
[42] |
Hossain A, Kuo MT, Saunders GF.Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA[J].Mol Cell Biol, 2006, 26(21):8191-8201
|
[43] |
Shu J, Xia Z, Li L, et al.Dose-dependent differential mRNA target selection and regulation by let-7a-7f and miR-17-92 cluster microRNAs[J].RNA Biol, 2014, 9(10):1275-1287
|
[44] |
Zhang Y, Ueno Y, Liu XS, et al.The MicroRNA-17-92 cluster enhances axonal outgrowth in embryonic cortical neurons[J].J Neurosci, 2013, 33(16):6885-6894
|