›› 2020, Vol. 11 ›› Issue (1): 1-8.
• 述评 • 下一篇
窦庚1,刘世宇1,金岩2
收稿日期:
2020-02-05
修回日期:
2020-03-05
出版日期:
2020-03-25
发布日期:
2020-04-07
通讯作者:
金岩
E-mail:yanjin@fmmu.edu.cn
Received:
2020-02-05
Revised:
2020-03-05
Online:
2020-03-25
Published:
2020-04-07
摘要: 细胞外囊泡(Extracellular Vesicles,EVs)是细胞分泌释放的微小囊泡,其中包含核酸、蛋白质等生物活性分子,在细胞间通讯和信号传导中发挥着重要的作用。研究表明,细胞外囊泡可以通过递送生物活性分子,在多种疾病中起到治疗的作用,有望成为新一代药物递送的天然载体。相较于传统纳米材料,天然EVs靶向递送具有低免疫原性、良好生物相容性、天然靶向性、长循环时间等明显优势,因而受到研究者的青睐。通过进一步组织工程手段来个性化构建EVs,提高其靶向性和目标治疗分子负载能力,为靶向分子治疗提供了一种新的治疗策略。本文将对EVs在组织工程构建策略方面的研究现状和前景作一简述。
窦庚 刘世宇 金岩. 细胞外囊泡在组织工程研究中的新应用[J]. 口腔生物医学, 2020, 11(1): 1-8.
[1] | Langer R, Vacanti JP.Tissue engineering[J].Science, 1993, 260(5110):920-926 |
[2] | Langer R, Vacanti JP, Vacanti CA, et al.Tissue engineering: biomedical applications[J].Tissue Eng, 1995, 1(2):151-161 |
[3] | Cima LG, Vacanti JP, Vacanti C, et al.Tissue engineering by cell transplantation using degradable polymer substrates[J].J Biomech Eng, 1991, 113(2):143-151 |
[4] | Liu S, Liu D, Chen C, et al.MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus[J].Cell Metab, 2015, 22(4):606-618 |
[5] | El Agha E, Kramann R, Schneider RK, et al.Mesenchymal Stem Cells in Fibrotic Disease[J].Cell Stem Cell, 2017, 21(2):166-177 |
[6] | Moussa L, Pattappa G, Doix B, et al.A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage[J].Biomaterials, 2017, 115:40-52 |
[7] | Lv YJ, Yang Y, Sui BD, et al.Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice[J].Theranostics, 2018, 8(9):2387-2406 |
[8] | Li L, Liu W, Wang H, et al.Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions[J].Cell Death Dis, 2018, 9(5):480- |
[9] | Shi Y, Hu G, Su J, et al.Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair[J].Cell Res, 2010, 20(5):510-518 |
[10] | Cao W, Cao K, Cao J, et al.Mesenchymal stem cells and adaptive immune responses[J].Immunol Lett, 2015, 168(2):147-153 |
[11] | Shi Y, Wang Y, Li Q, et al.Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J].Nat Rev Nephrol, 2018, 14(8):493-507 |
[12] | Agrahari V, Agrahari V, Burnouf PA, et al.Extracellular Microvesicles as New Industrial Therapeutic Frontiers[J].Trends Biotechnol, 2019, 37(7):707-729 |
[13] | Wiklander OPB, Brennan Má, L?tvall J, et al.Advances in therapeutic applications of extracellular vesicles[J].Sci Transl Med, 2019, 11(492):eaav8521- |
[14] | Ankrum J, Karp JM.Mesenchymal stem cell therapy: Two steps forward, one step back[J].Trends Mol Med, 2010, 16(5):203-209 |
[15] | Bernardo ME, Fibbe WE.Mesenchymal stromal cells: sensors and switchers of inflammation[J].Cell Stem Cell, 2013, 13(4):392-402 |
[16] | Takahashi A, Okada R, Nagao K, et al.Exosomes maintain cellular homeostasis by excreting harmful DNA from cells[J].Nat Commun, 2017, 8:15287- |
[17] | Malhotra H, Sheokand N, Kumar S, et al.Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment[J].J Biomed Nanotechnol, 2016, 12(5):1101-1114 |
[18] | Liu D, Kou X, Chen C, et al.Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors[J].Cell Res, 2018, 28(9):918-933 |
[19] | Chen X, Wong R, Khalidov I, et al.Inflamed leukocyte-mimetic nanoparticles for molecular imaging of inflammation[J].Biomaterials, 2011, 32(30):7651-7661 |
[20] | Parodi A, Quattrocchi N, van de Ven AL, et al.Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions[J].Nat Nanotechnol, 2013, 8(1):61-68 |
[21] | Thamphiwatana S, Angsantikul P, Escajadillo T, et al.Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management[J].Proc Natl Acad Sci U S A, 2017, 114(43):11488-11493 |
[22] | Wang Q, Ren Y, Mu J, et al.Grapefruit-Derived Nanovectors Use an Activated Leukocyte Trafficking Pathway to Deliver Therapeutic Agents to Inflammatory Tumor Sites[J].Cancer Res, 2015, 75(12):2520-2529 |
[23] | Sun H, Su J, Meng Q, et al.Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J].Adv Mater, 2016, 28(43):9581-9588 |
[24] | Hu CM, Fang RH, Wang KC, et al.Nanoparticle biointerfacing by platelet membrane cloaking[J].Nature, 2015, 526(7571):118-121 |
[25] | Song H, Li X, Zhao Z, et al.Reversal of Osteoporotic Activity by Endothelial Cell-Secreted Bone Targeting and Biocompatible Exosomes[J].Nano Lett, 2019, 19(5):3040-3048 |
[26] | Yang X, Yang J, Lei P,et al.LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis[J].Aging, 2019, 11(20):8777-8791 |
[27] | Liu W, Li L, Rong Y, et al.Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J].Acta Biomater, 2019, 103:196-212 |
[28] | Zhao J, Li X, Hu J, et al.Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization[J].Cardiovasc Res, 2019, 115(7):1205-1216 |
[29] | Song Y, Li Z, He T, et al.M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J].Theranostics, 2019, 9(10):2910-2923 |
[30] | Wu J, Dong T, Chen T, et al.Hepatic exosome-derived miR-130a-3p attenuates glucose intolerance via suppressing PHLPP2 gene in adipocyte[J].Metabolism, 2019, 103:154006- |
[31] | Jiang F, Chen Q, Wang W, et al.Hepatocyte-derived extracellular vesicles promote endothelial inflammation and atherogenesis via microRNA-1[J].J Hepatol, 2020, 72(1):156-166 |
[32] | Sundaram K, Miller DP, Kumar A, et al.Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis[J].21:308-327, 2019, 21:308-327 |
[33] | Yao X, Wei W, Wang X, et al.Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders[J].Biomaterials, 2019, 224:119492- |
[34] | Henriques-Antunes H, Cardoso RMS, Zonari A, et al.The Kinetics of Small Extracellular Vesicle Delivery Impacts Skin Tissue Regeneration[J].ACS Nano, 2019, 13:8694-8707 |
[35] | Cao LQ, Yang XW, Chen YB, et al.Exosomal miR-21 regulates the TETs/PTENp1/PTEN pathway to promote hepatocellular carcinoma growth[J].Mol Cancer, 2019, 18(1):148- |
[36] | Jiang K, Yang J, Guo S, et al.Peripheral Circulating Exosome-Mediated Delivery of miR-155 as a Novel Mechanism for Acute Lung Inflammation[J].Mol Ther, 2019, 27(10):1758-1771 |
[37] | Wan L, Xia T, Du Y, et al.Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells[J].FASEB J, 2019, 33(7):8530-8542 |
[38] | Min L, Zhu S, Chen L, et al.Evaluation of circulating small extracellular vesicles derived miRNAs as biomarkers of early colon cancer: a comparison with plasma total miRNAs[J].J Extracell Vesicles, 2019, 8(1):1643670- |
[39] | Jia L, Qiu Q, Zhang H, et al.Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid[J].Alzheimers Dement, 2019, 15(8):1071-1080 |
[40] | Sherif AY, Harisa GI, Alanazi FK, et al.Engineering of Exosomes: Steps Towards Green Production of Drug Delivery System[J].Curr Drug Targets, 2019, 20(15):1537-1549 |
[41] | Lee J, Lee H, Goh U, et al.Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles[J].ACS Appl Mater Interfaces, 2016, 8(11):6790-6795 |
[42] | Bose RJC, Uday Kumar S, Zeng Y, et al.Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents[J].ACS Nano, 2018, 12(11):10817-10832 |
[43] | Zhai Y, Su J, Ran W, et al.Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy[J].Theranostics, 2017, 7(10):2575-2592 |
[44] | Watson DC, Bayik D, Srivatsan A, et al.Efficient production and enhanced tumor delivery of engineered extracellular vesicles[J].Biomaterials, 2016, 105:195-205 |
[45] | Fan Z, Xiao K, Lin J, et al.Functionalized DNA Enables Programming Exosomes/Vesicles for Tumor Imaging and Therapy[J].Small, 2019, 15(47):e1903761- |
[46] | Yong T, Zhang X, Bie N, et al.Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy[J].Nat Commun, 2019, 10(1):3838- |
[47] | Hu Q, Sun W, Qian C, et al.Anticancer Platelet-Mimicking Nanovehicles[J].Adv Mater, 2015, 27(44):7043-7050 |
[48] | Wang D, Dong H, Li M, et al.Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma[J].ACS Nano, 2018, 12(6):5241-5252 |
[49] | Zhang W, Yu ZL, Wu M, et al.Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles[J].ACS Nano, 2017, 11(1):277-290 |
[50] | Shen S, Li Y, Xiao Y, et al.Folate-conjugated nanobubbles selectively target and kill cancer cells via ultrasound-triggered intracellular explosion[J].Biomaterials, 2018, 181:293-306 |
[51] | Shen MY, Liu TI, Yu TW, et al.Hierarchically targetable polysaccharide-coated solid lipid nanoparticles as an oral chemo/thermotherapy delivery system for local treatment of colon cancer[J].Biomaterials, 2019, 197:86-100 |
[52] | Zheng Z, Li Z, Xu C, et al.Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping[J].J Control Release, 2019, 311/312:43-49 |
[53] | Pi F, Binzel DW, Lee TJ, et al.Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression[J].Nat Nanotechnol, 2018, 13(1):82-89 |
[54] | Qi H, Liu C, Long L, et al.Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy[J].ACS Nano, 2016, 10(3):3323-3333 |
[55] | Lin Q, Qu M, Zhou B, et al.Exosome-like nanoplatform modified with targeting ligand improves anti-cancer and anti-inflammation effects of imperialine[J].J Control Release, 2019, 311/312:104-116 |
[56] | Haney MJ, Suresh P, Zhao Y, et al.Blood-borne macrophage-neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery[J].Nanomedicine, 2012, 7(6):815-833 |
[57] | Fan K, Jia X, Zhou M, et al.Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma[J].ACS Nano, 2018, 12(5):4105-4115 |
[58] | Yang T, Fogarty B, LaForge B, et al.Delivery of Small Interfering RNA to Inhibit Vascular Endothelial Growth Factor in Zebrafish Using Natural Brain Endothelia Cell-Secreted Exosome Nanovesicles for the Treatment of Brain Cancer[J].AAPS J, 2017, 19(2):475-486 |
[59] | Yuan D, Zhao Y, Banks WA, et al.Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain[J].Biomaterials, 2017, 142:1-12 |
[60] | Alvarez-Erviti L, Seow Y, Yin H, et al.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes[J].Nat Biotechnol, 2011, 29(4):341-345 |
[61] | Pusic AD, Pusic KM, Clayton BL, et al.IFNgamma-stimulated dendritic cell exosomes as a potential therapeutic for remyelination[J].J Neuroimmunol, 2014, 266(1/2):12-23 |
[62] | Tang TT, Lv LL, Wang B, et al.Employing Macrophage-Derived Microvesicle for Kidney-Targeted Delivery of Dexamethasone: An Efficient Therapeutic Strategy against Renal Inflammation and Fibrosis[J].Theranostics, 2019, 9(16):4740-4755 |
[63] | Guo S, Perets N, Betzer O, et al.Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury[J].ACS Nano, 2019, 13(9):10015-10028 |
[64] | Wang M, Wang C, Chen M, et al.Efficient Angiogenesis-Based Diabetic Wound Healing/Skin Reconstruction through Bioactive Antibacterial Adhesive Ultraviolet Shielding Nanodressing with Exosome Release[J].ACS Nano, 2019, 13(9):10279-10293 |
[65] | Mentkowski KI, Lang JK.Exosomes Engineered to Express a Cardiomyocyte Binding Peptide Demonstrate Improved Cardiac Retention in Vivo[J].Sci Rep, 2019, 9(1):10041- |
[66] | Vandergriff A, Huang K, Shen D, et al.Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide[J].Theranostics, 2018, 8(7):1869-1878 |
[67] | Tapparo M, Bruno S, Collino F, et al.Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells[J].Int J Mol Sci, 2019, 20(10):E2381- |
[68] | Pizzicannella J, Gugliandolo A, Orsini T, et al.Engineered Extracellular Vesicles From Human Periodontal-Ligament Stem Cells Increase VEGF/VEGFR2 Expression During Bone Regeneration[J].Front Physiol, 2019, 10:512- |
[69] | Cunnane EM, Weinbaum JS, O'Brien FJ, et al.Future Perspectives on the Role of Stem Cells and Extracellular Vesicles in Vascular Tissue Regeneration[J].Front Cardiovasc Med, 2018, 5:86- |
[70] | Wang X, Chen Y, Zhao Z, et al.Engineered Exosomes With Ischemic Myocardium-Targeting Peptide for Targeted Therapy in Myocardial Infarction[J].J Am Heart Assoc, 2018, 7(15):e008737- |
[71] | Dai X, Medzhitov R.Inflammation: Memory beyond immunity[J].Nature, 2017, 550(7677):460-461 |
[72] | Kolb JP, Oguin TH 3rd, Oberst A, et al.Programmed Cell Death and Inflammation: Winter Is Coming[J].Trends Immunol, 2017, 38(10):705-718 |
[73] | Janakiraman K, Krishnaswami V, Sethuraman V, et al.Development of Methotrexate and Minocycline Loaded Nanoparticles for the Effective Treatment of Rheumatoid Arthritis[J].AAPS PharmSciTech, 2019, 21(2):34- |
[74] | Zhang Q, Dehaini D, Zhang Y, et al.Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis[J].Nat Nanotechnol, 2018, 13(12):1182-1190 |
[75] | Li R, He Y, Zhu Y, et al.Route to Rheumatoid Arthritis by Macrophage-Derived Microvesicle-Coated Nanoparticles[J].Nano Lett, 2019, 19(1):124-134 |
[76] | Alam MT, Amos GCA, Murphy ARJ, et al.Microbial imbalance in inflammatory bowel disease patients at different taxonomic levels[J].Gut Pathog, 2020, 12:1- |
[77] | Kaplan GG.The global burden of IBD: from 2015 to 2025[J].Nat Rev Gastroenterol Hepatol, 2015, 12(12):720-727 |
[78] | Liu H, Liang Z, Wang F, et al.Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism[J].JCI Insight, 2019, 4(24):131273- |
[79] | Yu L, Yang F, Jiang L, et al.Exosomes with membrane-associated TGF-beta1 from gene-modified dendritic cells inhibit murine EAE independently of MHC restriction[J].Eur J Immunol, 2013, 43(9):2461-2472 |
[80] | Zhao H, Shang Q, Pan Z, et al.Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue[J].Diabetes, 2018, 67(2):235-247 |
[81] | Kim H, Wang SY, Kwak G, et al.Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing[J].Adv Sci, 2019, 6(20):1900513- |
[82] | Frodermann V, Rohde D, Courties G, et al.Exercise reduces inflammatory cell production and cardiovascular inflammation via instruction of hematopoietic progenitor cells[J].Nat Med, 2019, 25(11):1761-1771 |
[83] | Cutarelli A, Ghio S, Zasso J, et al.Vertically-Aligned Functionalized Silicon Micropillars for 3D Culture of Human Pluripotent Stem Cell-Derived Cortical Progenitors[J].Cells, 2019, 9(1):E88- |
[84] | Boo L, Yeap SK, Ali NM, et al.Phenotypic and microRNA characterization of the neglected CD24+ cell population in MCF-7 breast cancer 3-dimensional spheroid culture[J].J Chin Med Assoc, 2020, 83(1):67-76 |
[85] | Tian Y, Gong M, Hu Y, et al.Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry[J].J Extracell Vesicles, 2020, 9(1):1697028- |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||