›› 2020, Vol. 11 ›› Issue (4): 256-261.
陈晓艳1,刘超1,肖晶2
收稿日期:
2020-07-19
修回日期:
2020-10-20
出版日期:
2020-12-25
发布日期:
2020-12-31
通讯作者:
肖晶
E-mail:xiaoj@dmu.edu.cn
基金资助:
Received:
2020-07-19
Revised:
2020-10-20
Online:
2020-12-25
Published:
2020-12-31
Contact:
Jing XIAO
E-mail:xiaoj@dmu.edu.cn
摘要: 致密结缔组织在发育中与骨骼肌存在相互作用,在骨骼肌发育与再生中不可或缺。本文重点对致密结缔组织的发育调控过程及其与骨骼肌相互作用进行阐述,并介绍细胞外基质中蛋白多糖在致密结缔组织发育中的作用。
陈晓艳 刘超 肖晶. 致密结缔组织发育及其与骨骼肌相互作用的研究进展[J]. 口腔生物医学, 2020, 11(4): 256-261.
[1] | Nassari S, Duprez D, Fournier-Thibault C.Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues[J].Frontiers in Cell and Developmental Biology, 2017, (5):22- |
[2] | Schweitzer R, Chyung JH, Murtaugh LC, et al.Analysis of the tendon cell fate using Scleraxis,a specific marker for tendons and ligaments[J].Development, 2001, 128(19):3855-3866 |
[3] | Huang AH, Lu HH, Schweitzer R.Molecular Regulation of Tendon Cell Fate During Development[J].J ORTHOP RES, 2015, 33(6):800-12 |
[4] | Subramanian A, Schilling TF.Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix[J].Development, 2015, 142(24):4191-204 |
[5] | Alberton P, Popov C, Pr?gert M, et al.Conversion of Human Bone Marrow-Derived Mesenchymal Stem Cells into Tendon Progenitor Cells by Ectopic Expression of Scleraxis[J].Stem Cells DEV, 2012, 21(6):846-58 |
[6] | Murchison ND, Price BA, Conner DA, et al.Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons[J].Development, 2007, 134:2697-2708 |
[7] | Liu W, Watson SS, Lan Y, et al.The Atypical Homeodomain Transcription Factor Mohawk Controls Tendon Morphogenesis[J].Mol Cell Biol, 2010, 30(20):4797-807 |
[8] | Gaut L, Duprez D.Tendon development and diseases[J].WIREs Dev Biol, 2016, 5:5-23 |
[9] | Havis E, Bonnin MA, Olivera-Martinez I, et al.Transcriptomic analysis of mouse limb tendon cells during development[J].Development, 2014, 141:3683-3696 |
[10] | Brent AE, Braun T, Tabin CJ.Genetic analysis of interactions between the somitic muscle,cartilage and tendon cell lineages during mouse development[J].Development, 2005, 132:515-528 |
[11] | Pryce BA, Watson SS, Murchison ND, et al.Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation[J].Development, 2009, 136:1351-1361 |
[12] | Edom-Vovard F, Schuler B, Bonnin MA, et al.Fgf4 Positively Regulates scleraxis and Tenascin Expression in Chick Limb Tendons[J].Developmental Biology, 2002, 247:351-366 |
[13] | Brown JP, Finley VG, Kuo CK.Embryonic Mechanical and Soluble Cues Regulate Tendon Progenitor Cell Gene Expression as a Function of Developmental Stage and Anatomical Origin[J].J Biomech, 2014, 47(1):214-222 |
[14] | Kardon G, Harfe BD, Tabin CJ.A Tcf4-Positive Mesodermal Population Provides a Prepattern for Vertebrate Limb Muscle Patterning[J].DEV CELL, 2003, 5:937-944 |
[15] | Mathew SJ, Hansen JM, Merrell AJ, et al.Connective tissue fibroblasts and Tcf4 regulate myogenesis[J].Development, 2011, 138:371-384 |
[16] | Bonafede A, K?hler T, Rodriguez-Niedenführ M, et al.BMPs restrict the position of premuscle masses in the limb buds by influencing Tcf4 expression[J].Developmental Biology, 2006, 299(2):330-344 |
[17] | Hasson P, Del Buono J, Logan MP.Tbx5 is dispensable for forelimb outgrowth[J].Development, 2007, 134:85-92 |
[18] | Naiche LA, Papaioannou VE.Tbx4 is not required for hindlimb identity or post-bud hindlimb outgrowth[J].Development, 2007, 134:93-103 |
[19] | Colasanto MP, Eyal S, Mohassel P, et al.Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3[J].Disease Models & Mechanisms, 2016, 9:1257-1269 |
[20] | Hasson P, DeLaurier A, Bennett M, et al.Tbx4 and Tbx5 acting in connective tissue are required for limb muscle and tendon patterning[J].Dev Cell, 2010, 18(1):148-56 |
[21] | Stricker S, Mathia S, Haupt J, et al.Odd-skipped Related Genes Regulate Differentiation of Embryonic Limb Mesenchyme and Bone Marrow Mesenchymal Stromal Cells[J].Stem Cells Dev, 2012, 21(4):623-33 |
[22] | Vallecillo-García P, Orgeur M, Vom Hofe-Schneider S, et al.Odd skipped-related 1 identifies a population of embryonic fibro-adipogenic progenitors regulating myogenesis during limb development[J].Nat Commun, 2017, 8(1):1218- |
[23] | Theocharis AD, Skandalis SS, Gialeli C, et al.Extracellular matrix structure [J]. Advanced Drug Delivery Reviews, 2016, 4-27. https://doi.org/10.1016/j.addr.2015.11.001. |
[24] | Paganini C, Costantini R, Superti-Furga A, et al.Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view [J]. FEBS J, 2019, 3008-3032. https://doi.org/10.1111/febs.14984. |
[25] | Theocharis AD, Skandalis SS, Tzanakakis GN, et al.Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting [J]. FEBS J, 2010, 3904-3923. https://doi.org/10.1111/j.1742-4658.2010.07800.x. |
[26] | Theocharis AD, Gialeli C, Bouris P, et al.Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer [J]. FEBS J, 2014, 5023-5042. https://doi.org/10.1111/febs.12927. |
[27] | Koike T, Izumikawa T, Tamura J, et al.FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region [J]. Biochem. J, 2009, 157-162. https://doi.org/10.1042/BJ20090474. |
[28] | Zhang H, Zhu Q, Cui J, et al.Structure and evolution of the Fam20 kinases[J].Nat Commun, 2018, 9:1218- |
[29] | Nairn AV, Kinoshita-Toyoda A, Toyoda H, et al.Glycomics of Proteoglycan Biosynthesis in Murine Embryonic Stem Cell Differentiation[J].J Proteome Res, 2007, 6(11):4374-4387 |
[30] | Nalbant D, Youn H, Nalbant SI, et al.FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells[J].BMC Genomics, 2005, 6:11- |
[31] | Li LL, Liu PH, Xie XH, et al.Loss of epithelial FAM20A in mice causes amelogenesis imperfecta,tooth eruption delay and gingival overgrowth[J].International Journal of Oral Science, 2016, 8:98-109 |
[32] | Wang X, Wang S, Lu Y, et al.FAM20C plays an essential role in the formation of murine teeth[J].J Biol Chem, 2016, 287:35934-35942 |
[33] | Wang X, Wang S, Li C, et al.Inactivation of a Novel FGF23 Regulator,FAM20C,Leads to Hypophosphatemic Rickets in Mice[J].PLoS Genetics, 2012, 8(5):e1002708- |
[34] | Vogel P, Hansen GM, Read RW, et al.Amelogenesis Imperfecta and Other Biomineralization Defects in Fam20a and Fam20c Null Mice [J]. Vet Pathol, 2012, 998-1017. https://doi.org/10.1177/0300985812453177. |
[35] | Tian Y, Ma P, Liu C, et al.Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors[J].Eur J Oral Sci, 2015, 123(6):396-402 |
[36] | Ma P, Yan W, Tian Y, et al.Inactivation of Fam20B in Joint Cartilage Leads to Chondrosarcoma and Postnatal Ossification Defects[J].Scientific RepoRts, 2016, 6:29814- |
[37] | Liu X, Li N, Zhang H, et al.Inactivation of Fam20b in the neural crest-derived mesenchyme of mouse causes multiple craniofacial defects[J].Eur J Oral Sci, 2018, 000:1-4 |
[38] | Wen J, Xiao J, Rahdar M, et al.Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis [J]. PNAS, 2014, 15723-15728. https://doi.org/10.1073/pnas.1417993111. |
[39] | Dunkman AA, Buckley MR, Mienaltowski MJ, et al.Decorin expression is important for age-related changes in tendon structure and mechanical properties[J].Matrix Biology, 2013, 32:3-13 |
[40] | Sefton EM, Kardon G.Connecting muscle development,birth defects,and evolution: An essential role for muscle connective tissue[J].Curr Top Dev Biol, 2019, 132:137-176 |
[41] | Zou Y, Zhang RZ, Sabatelli P, et al.Muscle Interstitial Fibroblasts Are the Main Source of Collagen VI Synthesis in Skeletal Muscle: Implications for Congenital Muscular Dystrophy Types Ullrich and Bethlem[J].J Neuropathol Exp Neurol, 2008, 67(2):144-154 |
[42] | Ten Broek RW, Grefte S, Von den Hoff JW.Regulatory factors and cell populations involved in skeletal muscle regeneration[J].J Cell Physiol, 2010, 224(1):7-16 |
[43] | Ono Y, Boldrin L, Knopp P, et al.Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles[J].Dev Biol, 2010, 337(1):29-41 |
[44] | Carvajal Monroy PL, Grefte S, Kuijpers-Jagtman AM, et al.Strategies to Improve Regeneration of the Soft Palate Muscles After Cleft Palate Repair[J].Tissue Eng Part B Rev, 2012, 18(6):468-77 |
[45] | Brent AE, Braun T, Tabin CJ.Genetic analysis of interactions between the somitic muscle,cartilage and tendon cell lineages during mouse development[J].Development, 2005, 132:515-528 |
[46] | Grenier J, Teillet MA, Grifone R, et al.Relationship between Neural Crest Cells and Cranial Mesoderm during Head Muscle Development[J].Plos One, 2009, 4(2):e4381- |
[47] | Huang AH, Riordan TJ, Wang L, et al.Repositioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers[J].Dev Cell, 2013, 26(5):544-551 |
[48] | Dietrich S, Abou-Rebyeh F, Brohmann H, et al.The role of SFHGF and c-Met in the development of skeletal muscle[J].Development, 1999, 126:1621-1629 |
[49] | Vasyutina E, Stebler J, Brand-Saberi B, et al.CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells[J].Genes Dev, 2005, 19:2187-2198 |
[50] | Mathew SJ, Hansen JM, Merrell AJ, et al.Connective tissue fibroblasts and Tcf4 regulate myogenesis[J].Development, 2011, 138(2):371-84 |
[51] | Urciuolo A, Quarta M, Morbidoni V, et al.Collagen VI regulates satellite cell self-renewal and muscle regeneration[J].Nat Commun, 2013, 4:1964- |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||