›› 2020, Vol. 11 ›› Issue (4): 265-269.
郑含,范志朋
收稿日期:
2020-03-16
修回日期:
2020-10-30
出版日期:
2020-12-25
发布日期:
2020-12-31
通讯作者:
范志朋
E-mail:zpfan@ccmu.edu.com
1,
Received:
2020-03-16
Revised:
2020-10-30
Online:
2020-12-25
Published:
2020-12-31
摘要: 低氧微环境接近机体内细胞的真实状态,低氧条件下间充质干细胞微小RNA(miRNA)出现表达差异。miRNA通过翻译抑制或mRNA降解的方式,广泛参与低氧条件下间充质干细胞增殖、凋亡、分化等多种生物学功能的调控。本文介绍低氧条件对间充质干细胞miRNA表达以及细胞功能影响的研究进展。
郑含 范志朋. 低氧对microRNA的表达及间充质干细胞功能影响[J]. 口腔生物医学, 2020, 11(4): 265-269.
[1] | Yu T, Volponi AA, Babb R, et al.Stem cells in tooth development, growth, repair, and regeneration[J].Curr Top Dev Biol, 2015, 115:187-212 |
[2] | Carreau A, Hafny-Rahbi BE, Matejuk A, et al.Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia[J].J Cell Mol Med, 2011, 15(6):1239-1253 |
[3] | Lu TX, Rothenberg ME.MicroRNA[J].J Allergy Clin Immunol, 2018, 141(4):1202-1207 |
[4] | Aryal B, Singh AK, Rotllan N, et al.MicroRNAs and lipid metabolism[J].Curr Opin Lipidol, 2017, 28(3):273-280 |
[5] | Chang W, Lee CY, Park JH, et al.Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J].J Vet Sci, 2013, 14(1):69- |
[6] | Zhang Y, Lei W, Yan W, et al.microRNA-206 is involved in survival of hypoxia preconditioned mesenchymal stem cells through targeting Pim-1 kinase[J].Stem Cell Res Ther, 2016, 7(1):61- |
[7] | Shi R, Yang H, Lin X, et al.Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions[J].Stem Cell Res Ther, 2019, 10(1):89- |
[8] | Lee JS, Kim SK, Jung BJ, et al.Enhancing proliferation and optimizing the culture condition for human bone marrow stromal cells using hypoxia and fibroblast growth factor-2[J].Stem Cell Res, 2018, 28:87-95 |
[9] | Zhang Y, Lv J, Guo H, et al.Hypoxia-induced proliferation in mesenchymal stem cells and angiotensin II-mediated PI3K/AKT pathway[J].Cell Biochem Funct, 2015, 33(2):51-58 |
[10] | Mohd Ali N, Boo L, Yeap SK, et al.Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells[J].PeerJ, 2016, 4:e1536- |
[11] | Follmar KE, DeCroos FC, Prichard HL, et al.Effects of glutamine,glucose,and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells[J].Tissue Eng, 2006, 12(12):3525-3533 |
[12] | Qu HM, Qu LP, Pan XZ, et al.Upregulated miR-222 targets BCL2L11 and promotes apoptosis of mesenchymal stem cells in preeclampsia patients in response to severe hypoxia[J].Int J Clin Exp Pathol, 2018, 11(1):110-119 |
[13] | Wu X, Zhao X, Miao X.MicroRNA-374b promotes the proliferation and differentiation of neural stem cells through targeting Hes1[J].Biochem Biophys Res Commun, 2018, 503(2):593-599 |
[14] | Jiao S, Liu Y, Yao Y, et al.miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways[J].Mol Cell Biochem, 2018, 449(1/2):305-314 |
[15] | Zhang WM, Zhang ZR, Yang XT, et al.Overexpression of miR?21 promotes neural stem cell proliferation and neural differentiation via the Wnt/β?catenin signaling pathway in vitro[J].Mol Med Rep, 2018, 17(1):330-335 |
[16] | Ke Z, Qiu Z, Xiao T, et al.Downregulation of miR-224-5p promotes migration and proliferation in human dental pulp stem cells[J].Biomed Res Int, 2019, 2019:4759060- |
[17] | Jiang C, Xia W, Wu T, et al.Inhibition of microRNA-222 up-regulates TIMP3 to promotes osteogenic differentiation of MSCs from fracture rats with type 2 diabetes mellitus[J].J Cell Mol Med, 2020, 24(1):686-694 |
[18] | Jiang X, Xu C, Shi H, et al.PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model[J].PLoS One, 2019, 14(12):e0226163- |
[19] | Obradovic H, Krstic J, Trivanovic D, et al.Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche[J].Placenta, 2019, 82:25-34 |
[20] | Xu W, Xu R, Li Z, et al.Hypoxia changes chemotaxis behaviour of mesenchymal stem cells via HIF-1α signalling[J].J Cell Mol Med, 2019, 23(3):1899-1907 |
[21] | Meng SS, Xu XP, Chang W, et al.LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning[J].Stem Cell Res Ther, 2018, 9(1):280- |
[22] | Li X, He L, Yue Q, et al.MiR-9-5p promotes MSC migration by activating β-catenin signaling pathway[J].Am J Physiol Cell Physiol, 2017, 313(1):C80-C93 |
[23] | Yang DC, Yang MH, Tsai CC, et al.Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST[J].PLoS One, 2011, 6(9):e23965- |
[24] | Yang M, Liu H, Wang Y, et al.Hypoxia reduces the osteogenic differentiation of peripheral blood mesenchymal stem cells by upregulating Notch-1 expression[J].Connect Tissue Res, 2019, 60(6):583-596 |
[25] | Salim A, Nacamuli RP, Morgan EF, et al.Transient changes in oxygen tension inhibit osteogenic differentiation andRunx2Expression in osteoblasts[J].J Biol Chem, 2004, 279(38):40007-40016 |
[26] | Yu X, Wan Q, Ye X, et al.Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling[J].Cell Mol Biol Lett, 2019, 24:64- |
[27] | Gu Q, Gu Y, Shi Q, et al.Hypoxia promotes osteogenesis of human placental-derived mesenchymal stem cells[J].Tohoku J Exp Med, 2016, 239(4):287-296 |
[28] | Wang H, Flach H, Onizawa M, et al.Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210[J].Nat Immunol, 2014, 15(4):393-401 |
[29] | Wang Z, Deng M, Liu Z, et al.Hypoxia-induced miR-210 promoter demethylation enhances proliferation, autophagy and angiogenesis of schwannoma cells[J].Oncol Rep, 2017, 37(5):3010-3018 |
[30] | Ye L, Fan Z, Yu B, et al.Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs[J].Cell Stem Cell, 2012, 11(1):50-61 |
[31] | Asgharzadeh A, Alizadeh S, Keramati MR, et al.Upregulation of miR-210 promotes differentiation of mesenchymal stem cells (MSCs) into osteoblasts[J].Bosn J Basic Med Sci, 2018, 18(4):328-335 |
[32] | Li S, Patel DJ.Drosha and Dicer: Slicers cut from the same cloth[J].Cell Res, 2016, 26(5):511-512 |
[33] | Oskowitz AZ, Lu J, Penfornis P, et al.Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression[J].Proc Natl Acad Sci U S A, 2008, 105(47):18372-18377 |
[34] | Harfe BD, McManus MT, Mansfield JH, et al.The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb[J].Proc Natl Acad Sci U S A, 2005, 102(31):10898-10903 |
[35] | Lian JB, Stein GS, van Wijnen AJ, et al.MicroRNA control of bone formation and homeostasis[J].Nat Rev Endocrinol, 2012, 8(4):212-227 |
[36] | Kao GS, Tu YK, Sung PH, et al.MicroRNA-mediated interacting circuits predict hypoxia and inhibited osteogenesis of stem cells,and dysregulated angiogenesis are involved in osteonecrosis of the femoral head[J].Int Orthop, 2018, 42(7):1605-1614 |
[37] | Seenprachawong K, Tawornsawutruk T, Nantasenamat C, et al.miR-130a and miR-27b enhance osteogenesis in human bone marrow mesenchymal stem cells via specific down-regulation of peroxisome proliferator-activated receptor Γ[J].Front Genet, 2018, 9:543- |
[38] | Liu K, Jing Y, Zhang W, et al.Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2[J].Bone, 2017, 97(130):138- |
[39] | Fan J, An XY, Yang YL, et al.MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TESJmesenchymal tissue system via the wntβ-catenin pathway[J].Aging Dis, 2018, 9(6):1103- |
[40] | Almeida MI, Silva AM, Vasconcelos DM, et al.miR-195 in human primary mesenchymal stromal/stem cells regulates proliferation, osteogenesis and paracrine effect on angiogenesis[J].Oncotarget, 2016, 7(1):7-22 |
[41] | Lorente-Cebrián S, González-Muniesa P, Milagro FI, et al.MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets[J].Clin Sci, 2019, 133(1):23-40 |
[42] | Ye J, Gao Z, Yin J, et al.Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice[J].Am J Physiol Endocrinol Metab, 2007, 293(4):E1118-E1128 |
[43] | Kang T, Lu W, Xu W, et al.MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells[J].J Biol Chem, 2013, 288(48):34394-34402 |
[44] | Lin Q, Gao Z, Alarcon RM, et al.A role of miR-27in the regulation of adipogenesis[J].FEBS J, 2009, 276(8):2348-2358 |
[45] | Li Q, Li Y, Zhang D, et al.Downregulation of microRNA?451 improves cell migration, invasion and tube formation in hypoxia?treated HUVECs by targeting MIF[J].Mol Med Rep, 2019, 20(2):1167-1177 |
[46] | Xiong X, Sun Y, Wang X.HIF1A/miR-20a-5p/TGFβ1 axis modulates adipose-derived stem cells in a paracrine manner to affect the angiogenesis of human dermal microvascular endothelial cells[J].J Cell Physiol, 2020, 235(3):2091-2101 |
[47] | Yang Y, Sandhu HK, Zhi F, et al.Effects of hypoxia and ischemia on MicroRNAs in the brain[J].Curr Med Chem, 2015, 22(10):1292-1301 |
[48] | Hindorff LA, Sethupathy P, Junkins HA, et al.Potential etiologic and functional implications of genome-wide association loci for human diseases and traits[J].Proc Natl Acad Sci U S A, 2009, 106(23):9362-9367 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||