[1] |
Ye X, Shi L, Cheng Y, et al.A novel locus for autosomal dominant hereditary gingival fibromatosis,GINGF3,maps to chromosome 2p223-p23.3[J].Clin Genet, 2005, 68(3):239-244
|
[2] |
Ye X, Shi L, Yin W, et al.Further evidence of genetic heterogeneity segregating with hereditary gingival fibromatosis[J].J Clin Periodontol, 2009, 36(8):627-633
|
[3] |
Hart TC, Zhang Y, Gorry MC, et al.A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1[J].Am J Hum Genet, 2002, 70(4):943-954
|
[4] |
Jang SI, Lee EJ, Hart PS, et al.Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis[J].J Biol Chem, 2007, 282(28):20245-20255
|
[5] |
Bayram Y, White JJ, Elcioglu N, et al.REST final-exon-truncating mutations cause hereditary gingival fibromatosis[J].Am J Hum Genet, 2017, 101(1):149-156
|
[6] |
Nishimura F, Naruishi H, Naruishi K, et al.Cathepsin-L, a key molecule in the pathogenesis of drug-induced and I-cell disease-mediated gingival overgrowth: a study with cathepsin-L-deficient mice[J].Am J Pathol, 2002, 161(6):2047-2052
|
[7] |
Kortüm F, Caputo V, Bauer CK, et al.Mutations in KCNH1 and ATP6V1B2 cause Zimmermann-Laband syndrome[J].Nat Genet, 2015, 47(6):661-667
|
[8] |
Tommiska J, K?ns?koski J, Skibsbye L, et al.Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis[J].Nat Commun, 2017, 8(1):1289-
|
[9] |
Brownstein CA, Towne MC, Luquette LJ, et al.Mutation of KCNJ8 in a patient with Cantú syndrome with unique vascular abnormalities - support for the role of K(ATP) channels in this condition[J].Eur J Med Genet, 2013, 56(12):678-682
|
[10] |
Cooper PE, Reutter H, Woelfle J, et al.Cantú syndrome resulting from activating mutation in the KCNJ8 gene[J].Hum Mutat, 2014, 35(7):809-813
|
[11] |
van Bon BW, Gilissen C, Grange DK, et al.Cantú syndrome is caused by mutations in ABCC9[J].Am J Hum Genet, 2012, 90(6):1094-1101
|
[12] |
Pachajoa H, López-Quintero W, Vanegas S, et al.Novel mutation in ABBC9 gene associated with congenital hypertrichosis and acromegaloid facial features,without cardiac or skeletal anomalies: A new phenotype[J].Appl Clin Genet, 2018, 11:15-21
|
[13] |
Brohawn SG, Campbell EB, MacKinnon R.Physical mechanism for gating and mechanosensitivity of the human TRAAK K^+ channel[J].Nature, 2014, 516(7529):126-130
|
[14] |
Bauer CK, Calligari P, Radio FC, et al.Mutations in KCNK4 that affect gating cause a recognizable neurodevelopmental syndrome[J].Am J Hum Genet, 2018, 103(4):621-630
|
[15] |
Mariani P, Zhurakivska K, Santoro R, et al.Hereditary gingival fibromatosis associated with the missense mutation of the KCNK4 gene[J].Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, :S2212-4403(20)31128-7-
|
[16] |
Gao Q, Yang CC, Meng LY, et al.Activated KCNQ1 channel promotes fibrogenic response in hereditary gingival fibromatosis via clustering and activation of Ras[J].J Periodontal Res, 2020, :-
|
[17] |
Zhou Y, Wong CO, Cho KJ, et al.SIGNAL TRANSDUCTION. Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling[J].Science, 2015, 349(6250):873-876
|
[18] |
Gao Q, Yang K, Chen D, et al.Antifibrotic potential of MiR-335-3p in hereditary gingival fibromatosis[J].J Dent Res, 2019, 98(10):1140-1149
|
[19] |
H?kkinen L, Csiszar A.Hereditary gingival fibromatosis: Characteristics and novel putative pathogenic mechanisms[J].J Dent Res, 2007, 86(1):25-34
|
[20] |
Evans BR, Mosig RA, Lobl M, et al.Mutation of membrane type-1 metalloproteinase, MT1-MMP, causes the multicentric osteolysis and arthritis disease Winchester syndrome[J].Am J Hum Genet, 2012, 91(3):572-576
|
[21] |
Grover S, Grewal RS, Verma R, et al.Winchester syndrome: A case report[J].Int J Dermatol, 2009, 48(2):175-177
|
[22] |
Bhavani GS, Shah H, Shukla A, et al.Clinical and mutation profile of multicentric osteolysis nodulosis and arthropathy[J].Am J Med Genet A, 2016, 170A(2):410-417
|
[23] |
Van Damme T, Colige A, Syx D, et al.Expanding the clinical and mutational spectrum of the Ehlers-Danlos syndrome,dermatosparaxis type[J].Genet Med, 2016, 18(9):882-891
|
[24] |
Hanks S, Adams S, Douglas J, et al.Mutations in the gene encoding capillary morphogenesis protein 2 cause juvenile hyaline fibromatosis and infantile systemic hyalinosis[J].Am J Hum Genet, 2003, 73(4):791-800
|
[25] |
Wang YY, Wen CQ, Wei Z, et al.A novel splice site mutation in ANTXR2 (CMG2) gene results in systemic hyalinosis[J].J Pediatr Hematol Oncol, 2011, 33(8):e355-e357
|
[26] |
Denadai R, Raposo-Amaral CE, Bertola D, et al.Identification of 2 novel ANTXR2 mutations in patients with hyaline fibromatosis syndrome and proposal of a modified grading system[J].Am J Med Genet A, 2012, 158A(4):732-742
|
[27] |
Wilson GR, Sunley J, Smith KR, et al.Mutations in SH3PXD2B cause Borrone dermato-cardio-skeletal syndrome[J].Eur J Hum Genet, 2014, 22(6):741-747
|
[28] |
Parker K, Pabla R, Hay N, et al.Common dental features and craniofacial development of three siblings with Ter Haar syndrome[J].Eur Arch Paediatr Dent, 2014, 15(1):59-64
|
[29] |
Tefs K, Gueorguieva M, Klammt J, et al.Molecular and clinical spectrum of type I plasminogen deficiency: A series of 50 patients[J].Blood, 2006, 108(9):3021-3026
|
[30] |
Itoh Y.Membrane-type matrix metalloproteinases: Their functions and regulations[J].Matrix Biol, 2015, 444546:207-223
|
[31] |
Reeves C, Charles-Horvath P, Kitajewski J.Studies in mice reveal a role for Anthrax toxin receptors in matrix metalloproteinase function and extracellular matrix homeostasis[J].Toxins (Basel), 2013, 5(2):315-326
|
[32] |
Deryugina EI, Quigley JP.Cell surface remodeling by plasmin: A new function for an old enzyme[J].J Biomed Biotechnol, 2012, 2012:564259-
|
[33] |
Buschman MD, Bromann PA, Cejudo-Martin P, et al.The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation[J].Mol Biol Cell, 2009, 20(5):1302-1311
|
[34] |
Iizuka S, Abdullah C, Buschman MD, et al.The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma[J].Oncotarget, 2016, 7(48):78473-78486
|
[35] |
Bekhouche M, Leduc C, Dupont L, et al.Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF-β signaling as primary targets[J].FASEB J, 2016, 30(5):1741-1756
|
[36] |
Coletta RD, Graner E.Hereditary gingival fibromatosis: A systematic review[J].J Periodontol, 2006, 77(5):753-764
|
[37] |
Meng LY, Huang MJ, Ye XQ, et al.Increased expression of collagen prolyl 4-hydroxylases in Chinese patients with hereditary gingival fibromatosis[J].Arch Oral Biol, 2007, 52(12):1209-1214
|
[38] |
Roman-Malo L, Bullon B, de Miguel M, et al.Fibroblasts collagen production and histological alterations in hereditary gingival fibromatosis[J].Diseases, 2019, 7(2):39-
|
[39] |
Gawron K, ?azarz-Bartyzel K, Kowalska A, et al.Fibroblasts from recurrent fibrotic overgrowths reveal high rate of proliferation in vitro-findings from the study of hereditary and idiopathic gingival fibromatosis[J].Connect Tissue Res, 2019, 60(1):29-39
|
[40] |
Meng LY, Ye XQ, Fan MW, et al.Keratinocytes modify fibroblast metabolism in hereditary gingival fibromatosis[J].Arch Oral Biol, 2008, 53(11):1050-1057
|
[41] |
Hazzaa HH, Gouda OM, Kamal NM, et al.Expression of CD163 in hereditary gingival fibromatosis: A possible association with TGF-β1[J].J Oral Pathol Med, 2018, 47(3):286-292
|
[42] |
Nowarski R, Jackson R, Flavell RA.The stromal intervention: Regulation of immunity and inflammation at the epithelial-mesenchymal barrier[J].Cell, 2017, 168(3):362-375
|
[43] |
Wu CF, Chiang WC, Lai CF, et al.Transforming growth factor β-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis[J].Am J Pathol, 2013, 182(1):118-131
|