口腔生物医学 ›› 2024, Vol. 15 ›› Issue (2): 108-112.
崔菁瑶1,石玉2,叶玲3
收稿日期:
2023-12-20
修回日期:
2024-01-16
出版日期:
2024-04-25
发布日期:
2024-04-29
通讯作者:
叶玲
E-mail:yeling@scu.edu.cn
基金资助:
Jing-Yao CUI1, 2,Ling Ye
Received:
2023-12-20
Revised:
2024-01-16
Online:
2024-04-25
Published:
2024-04-29
Contact:
Ling Ye
E-mail:yeling@scu.edu.cn
摘要: 翻译后修饰(PTMs)在骨骼系统的发展和稳态维持中发挥着重要作用,与多种骨疾病的发生发展密切相关。本文就PTMs在骨折愈合中的作用与机制作一综述,为骨折愈合的治疗提供一定参考。
崔菁瑶 石玉 叶玲. 翻译后修饰在骨折愈合中作用机制的研究进展[J]. 口腔生物医学, 2024, 15(2): 108-112.
Jing-Yao CUI Ling Ye. Research progress on the mechanism of post-translational modifications in fracture healing[J]. Oral Biomedicine, 2024, 15(2): 108-112.
[1] | Einhorn TA, Gerstenfeld LC.Fracture healing: mechanisms and interventions[J].Nat Rev Rheumatol, 2015, 11(1):45-54 |
[2] | Foulke BA, Kendal AR, Murray DW, et al.Fracture healing in the elderly: A review[J].Maturitas, 2016, 92:49-55 |
[3] | Fillingham Y, Jacobs J.Bone grafts and their substitutes[J].Bone Joint J, 2016, 98-b(1 Suppl A):6-9 |
[4] | Cojocaru FD, Gardikiotis I, Dodi G, et al.Polysaccharides-Calcium Phosphates Composite Beads as Bone Substitutes for Fractures Repair and Regeneration[J].Polymers (Basel), 2023, 15(6):1509- |
[5] | Alkhawashki HM.Shock wave therapy of fracture nonunion[J].Injury, 2015, 46(11):2248-52 |
[6] | Kawaguchi H, Jingushi S, Izumi T, et al.Local application of recombinant human fibroblast growth factor-2 on bone repair: a dose-escalation prospective trial on patients with osteotomy[J].J Orthop Res, 2007, 25(4):480-7 |
[7] | Kawaguchi H, Oka H, Jingushi S, et al.A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized,placebo-controlled trial[J].J Bone Miner Res, 2010, 25(12):2735-43 |
[8] | Gillman CE, Jayasuriya AC.FDA-approved bone grafts and bone graft substitute devices in bone regeneration[J].Mater Sci Eng C Mater Biol Appl, 2021, 130:112466- |
[9] | Ronga M, Fagetti A, Canton G, et al.Clinical applications of growth factors in bone injuries: experience with BMPs[J].Injury, 2013, 44 Suppl 1:34-9 |
[10] | Gou P, Zhao Z, Yu C, et al.Efficacy of Recombinant Human Parathyroid Hormone versus Vertebral Augmentation Procedure on Patients with Acute Osteoporotic Vertebral Compression Fracture[J].Orthop Surg, 2022, 14(10):2510-8 |
[11] | Lin EA, Liu CJ, Monroy A, et al.Prevention of atrophic nonunion by the systemic administration of parathyroid hormone (PTH 1-34) in an experimental animal model[J].J Orthop Trauma, 2012, 26(12):719-23 |
[12] | Kendler DL, Marin F, Zerbini CaF, et al.Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre,double-blind,double-dummy,randomised controlled trial[J].Lancet, 2018, 391(10117):230-40 |
[13] | Reid IR, Billington EO.Drug therapy for osteoporosis in older adults[J].Lancet, 2022, 399(10329):1080-92 |
[14] | Lin H, Sohn J, Shen H, et al.Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing[J].Biomaterials, 2019, 203:96-110 |
[15] | Freitas J, Santos SG, Gon?alves RM, et al.Genetically Engineered-MSC Therapies for Non-unions,Delayed Unions and Critical-size Bone Defects[J].Int J Mol Sci, 2019, 20(14):3430- |
[16] | Liu H, Craig SEL, Molchanov V, et al.SUMOylation in Skeletal Development,Homeostasis,and Disease[J].Cells, 2022, 11(17):2710- |
[17] | Liu Y, Molchanov V, Yang T.Enzymatic Machinery of Ubiquitin and Ubiquitin-Like Modification Systems in Chondrocyte Homeostasis and Osteoarthritis[J].Curr Rheumatol Rep, 2021, 23(8):62- |
[18] | Bastian O, Pillay J, Alblas J, et al.Systemic inflammation and fracture healing[J].J Leukoc Biol, 2011, 89(5):669-73 |
[19] | Wu AC, Raggatt LJ, Alexander KA, et al.Unraveling macrophage contributions to bone repair[J].Bonekey Rep, 2013, 2:373- |
[20] | Hellwinkel JE, Miclau T, 3rd, Provencher MT, et al.The Life of a Fracture: Biologic Progression,Healing Gone Awry,and Evaluation of Union[J].JBJS Rev, 2020, 8(8):e1900221- |
[21] | Saul D, Khosla S.Fracture Healing in the Setting of Endocrine Diseases,Aging,and Cellular Senescence[J].Endocr Rev, 2022, 43(6):984-1002 |
[22] | Little DG, Ramachandran M, Schindeler A.The anabolic and catabolic responses in bone repair[J].J Bone Joint Surg Br, 2007, 89(4):425-33 |
[23] | Knox AM, Mcguire AC, Natoli RM, et al.Methodology,selection,and integration of fracture healing assessments in mice[J].J Orthop Res, 2021, 39(11):2295-309 |
[24] | Elhawary H, Baradaran A, Abi-Rafeh J, et al.Bone Healing and Inflammation: Principles of Fracture and Repair[J].Semin Plast Surg, 2021, 35(3):198-203 |
[25] | Hunter T.Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling[J].Cell, 1995, 80(2):225-36 |
[26] | Lim YP.Mining the tumor phosphoproteome for cancer markers[J].Clin Cancer Res, 2005, 11(9):3163-9 |
[27] | Radivojac P, Baenziger PH, Kann MG, et al.Gain and loss of phosphorylation sites in human cancer[J].Bioinformatics, 2008, 24(16):i241-7 |
[28] | Dong J, Xu X, Zhang Q, et al.The PI3KAKT pathway promotes fracture healing through its crosstalk with Wntβ-catenin[J].Exp Cell Res, 2020, 394(1):112137- |
[29] | Ahmad M, Krüger BT, Kroll T, et al.Inhibition of Cdk5 increases osteoblast differentiation and bone mass and improves fracture healing[J].Bone Res, 2022, 10(1):33- |
[30] | Zhang T, Han W, Zhao K, et al.Psoralen accelerates bone fracture healing by activating both osteoclasts and osteoblasts[J].FASEB J, 2019, 33(4):5399-410 |
[31] | Ma C, Liu H, Wei Y, et al.Exogenous PTH 1-34 Attenuates Impaired Fracture Healing in Endogenous PTH Deficiency Mice via Activating Indian Hedgehog Signaling Pathway and Accelerating Endochondral Ossification[J].Front Cell Dev Biol, 2021, 9:750878- |
[32] | Chen P, Zhang G, Jiang S, et al.Mechanosensitive Piezo1 in endothelial cells promotes angiogenesis to support bone fracture repair[J].Cell Calcium, 2021, 97:102431- |
[33] | Schjoldager KT, Narimatsu Y, Joshi HJ, et al.Global view of human protein glycosylation pathways and functions[J].Nat Rev Mol Cell Biol, 2020, 21(12):729-49 |
[34] | Zhou X, Motta F, Selmi C, et al.Antibody glycosylation in autoimmune diseases[J].Autoimmun Rev, 2021, 20(5):102804- |
[35] | Magalh?es A, Duarte HO, Reis CA.The role of O-glycosylation in human disease[J].Mol Aspects Med, 2021, 79:100964- |
[36] | D' souza RN, Cavender A, Sunavala G, et al.Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo[J].J Bone Miner Res, 1997, 12(12):2040-9 |
[37] | Sun Y, Weng Y, Zhang C, et al.Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis[J].Sci Rep, 2015, 5:17518- |
[38] | Xue H, Tao D, Weng Y, et al.Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis[J].Front Med, 2019, 13(5):575-89 |
[39] | Hershko A, Ciechanover A.The ubiquitin system[J].Annu Rev Biochem, 1998, 67:425-79 |
[40] | Zheng N, Shabek N.Ubiquitin Ligases: Structure,Function,and Regulation[J].Annu Rev Biochem, 2017, 86:129-57 |
[41] | Popovic D, Vucic D, Dikic I.Ubiquitination in disease pathogenesis and treatment[J].Nat Med, 2014, 20(11):1242-53 |
[42] | Song L, Luo ZQ.Post-translational regulation of ubiquitin signaling[J].J Cell Biol, 2019, 218(6):1776-86 |
[43] | Mansour MA.Ubiquitination: Friend and foe in cancer[J].Int J Biochem Cell Biol, 2018, 101:80-93 |
[44] | Jiang Y, Zhang J, Li Z, et al.Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-25 Regulates the Ubiquitination and Degradation of Runx2 by SMURF1 to Promote Fracture Healing in Mice[J].Front Med (Lausanne), 2020, 7:577578- |
[45] | Huang Y, Xu Y, Feng S, et al.miR-19b enhances osteogenic differentiation of mesenchymal stem cells and promotes fracture healing through the WWP1Smurf2-mediated KLF5β-catenin signaling pathway[J].Exp Mol Med, 2021, 53(5):973-85 |
[46] | Huang J, Zhou H, He L, et al.The promotive role of USP1 inhibition in coordinating osteogenic differentiation and fracture healing during nonunion[J].J Orthop Surg Res, 2023, 18(1):152- |
[47] | Li Y, Yang ST, Yang S.Trp53 controls chondrogenesis and endochondral ossification by negative regulation of TAZ activity and stability via β-TrCP-mediated ubiquitination[J].Cell Death Discov, 2022, 8(1):317- |
[48] | Blanc RS, Richard S.Arginine Methylation: The Coming of Age[J].Mol Cell, 2017, 65(1):8-24 |
[49] | Kouzarides T.Chromatin modifications and their function[J].Cell, 2007, 128(4):693-705 |
[50] | Shao R, Zhang Z, Xu Z, et al.H3K36 methyltransferase NSD1 regulates chondrocyte differentiation for skeletal development and fracture repair[J].Bone Res, 2021, 9(1):30- |
[51] | Sun J, Feng H, Xing W, et al.Histone demethylase LSD1 is critical for endochondral ossification during bone fracture healing[J].Sci Adv, 2020, 6(45):e-a |
[52] | Narita T, Weinert BT, Choudhary C.Functions and mechanisms of non-histone protein acetylation[J].Nat Rev Mol Cell Biol, 2019, 20(3):156-74 |
[53] | Xia C, Tao Y, Li M, et al.Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review)[J].Exp Ther Med, 2020, 20(4):2923-40 |
[54] | Zhang C, Feinberg D, Alharbi M, et al.Chondrocytes Promote Vascularization in Fracture Healing Through a FOXO1-Dependent Mechanism[J].J Bone Miner Res, 2019, 34(3):547-56 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||