[1]Ye JH, Xu YJ, Gao J, et al.Critical-size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs[J].Biomaterials, 2011, 32(22):5065-5076[2]Zou D, Zhang Z, Ye D, et al.Repair of critical-sized rat calvarial defects using genetically engineered bone marrow-derived mesenchymal stem cells overexpressing hypoxia-inducible factor-1alpha[J].Stem Cells, 2011, 29(9):1380-1390[3]Lim KT, Hexiu J, Kim J, et al.Synergistic effects of orbital shear stress on in vitro growth and osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells[J].Biomed Res Int, 2014, 2014:316803-[4]Pillai RS, Bhattacharyya SN, Filipowicz W.Repression of protein synthesis by miRNAs: how many mechanisms?[J].Trends Cell Biol, 2007, 17(3):118-126[5]Sun T, Li MY, Li PF, et al.MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role[J].Cells, 2018, 7(8):E104-[6]Hannafon BN, Ding WQ.Functional Role of microRNAs in the Progression of Breast Ductal Carcinoma in situ[J].Am J Pathol, 2018, :S0002-9440(18)30380-8-[7]Hua Z, Lv Q, Ye W, et al.MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia[J].PLoS One, 2006, 1:e116-[8]Friedman RC, Farh KK, Burge CB, et al.Most mammalian mRNAs are conserved targets of microRNAs[J].Genome Res, 2009, 19(1):92-105[9]Zeng Y, Qu X, Li H, et al.MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2[J].FEBS Lett, 2012, 586(16):2375-2381[10]Li Z, Hassan MQ, Volinia S, et al.A microRNA signature for a BMP2-induced osteoblast lineage commitment program[J].Proc Natl Acad Sci U S A, 2008, 105(37):13906-13911[11]Lian JB, Stein GS, van Wijnen AJ, et al.MicroRNA control of bone formation and homeostasis[J].Nat Rev Endocrinol, 2012, 8(4):212-227[12]Huang S, Wang S, Bian C, et al.Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression[J].Stem Cells Dev, 2012, 21(13):2531-2340[13]Li H, Li T, Wang S, et al.miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells[J].Stem Cell Res, 2013, 10(3):313-324[14]Chen L, Holmstrom K, Qiu W, et al.MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells[J].Stem Cells, 2014, 32(4):902-912[15]Krzeszinski JY, Wei W, Huynh H, et al.miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2[J].Nature, 2014, 512(7515):431-435[16]Fan C, Jia L, Zheng Y, et al.MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network[J].Stem Cell Reports, 2016, 7(2):236-248[17]Wang Z, Xie Q, Yu Z, et al.A regulatory loop containing miR-26a, GSK3β and C/EBPα regulates the osteogenesis of human adipose-derived mesenchymal stem cells[J].Sci Rep, 2015, 5:15280-[18]Luzi E, Marini F, Tognarini I, et al.The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases[J].Nucleic Acid Ther, 2012, 22(2):103-108[19]Li X, Zhang Y, Kang H, et al.Sclerostin binds to LRP56 and antagonizes canonical Wnt signaling[J].J Biol Chem, 2005, 280(20):19883-19887[20]Bafico A, Liu G, Yaniv A, et al.Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow[J].Nat Cell Biol, 2001, 3(3):683-686[21]Spencer GJ, Utting JC, Etheridge SL, et al.Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro[J].J Cell Sci, 2006, 119(Pt 7):1283-1296[22]Chen Y, Alman BA.Wnt pathway, an essential role in bone regeneration.[J].J Cell Biochem, 2009, 106(3):353-362[23]Martínez-Gil N, Roca-Ayats N, Monistrol-Mula A, et al.Common and rare variants of WNT16,DKK1 and SOST and their relationship with bone mineral density[J].Sci Rep, 2018, 8(1):10951- |