[1] |
Campana V, Milano G, Pagano E, et al.Bone substitutes in orthopaedic surgery: From basic science to clinical practice[J].J Mater Sci Mater Med, 2014, 25(10):2445-2461
|
[2] |
Amini AR, Laurencin CT, Nukavarapu SP.Bone tissue engineering: Recent advances and challenges[J].Crit Rev Biomed Eng, 2012, 40(5):363-408
|
[3] |
刘洋, 王欢, 朱晔, 等.骨组织工程支架材料研究进展[J].临床口腔医学杂志, 2019, 35(10):637-639
|
[4] |
Feng X.Chemical and biochemical basis of cell-bone matrix interaction in health and disease[J].Curr Chem Biol, 2009, 3(2):189-196
|
[5] |
Venugopal J, Prabhakaran MP, Zhang Y, et al.Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering[J].Philos Trans A Math Phys Eng Sci, 2010, 368(1917):2065-2081
|
[6] |
Storti E, Himcinschi C, Kortus J, et al.Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning[J].J Eur Ceram Soc, 2019, 39(16):5338-5344
|
[7] |
Lenz R, Mittelmeier W, Hansmann D, et al.Response of human osteoblasts exposed to wear particles generated at the interface of total hip stems and bone cement[J].J Biomed Mater Res A, 2009, 89(2):370-378
|
[8] |
Chen Y, Roohani-Esfahani SI, Lu ZF, et al.Zirconium ions up-regulate the BMP/SMAD signaling pathway and promote the proliferation and differentiation of human osteoblasts[J].PLoS One, 2015, 10(1):e0113426-
|
[9] |
Bhowmick A, Pramanik N, Jana P, et al.Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application[J].Int J Biol Macromol, 2017, 95:348-356
|
[10] |
Teimouri A, Ebrahimi R, Emadi R, et al.Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology[J].Int J Biol Macromol, 2015, 76:292-302
|
[11] |
Bhattarai DP, Aguilar LE, Park CH, et al.A review on properties of natural and synthetic based electrospun fibrous materials for bone tissue engineering[J].Membranes (Basel), 2018, 8(3):62-
|
[12] |
Zhuang Y, Lin K, Yu H.Advance of nano-composite electrospun fibers in periodontal regeneration[J].Front Chem, 2019, 7:495-
|
[13] |
Gaihre B, Jayasuriya AC.Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration[J].Mater Sci Eng C Mater Biol Appl, 2018, 91:330-339
|
[14] |
Afzal A.Implantable zirconia bioceramics for bone repair and replacement: A chronological review[J].Mater Express, 2014, 4(1):1-12
|
[15] |
Bhowmick A, Pramanik N, Mitra T, et al.Mechanical and biological investigations of chitosan–polyvinyl alcohol based ZrO2 doped porous hybrid composites for bone tissue engineering applications[J].New J Chem, 2017, 41(15):7524-7530
|
[16] |
Zhao H, Ye C, Xiong S, et al.Fabricating an effective calcium zirconate layer over the calcia grains via binder-jet 3D-printing for improving the properties of calcia ceramic cores[J].Addit Manuf, 2020, 32:101025-
|
[17] |
Wang X, Salick MR, Wang X, et al.Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils[J].Biomacromolecules, 2013, 14(10):3557-3569
|
[18] |
Li L, Li G, Jiang J, et al.Electrospun fibrous scaffold of hydroxyapatitepoly (ε-caprolactone) for bone regeneration[J].J Mater Sci Mater Med, 2012, 23(2):547-554
|
[19] |
Roohani-Esfahani SI, Dunstan CR, Davies B, et al.Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds[J].Acta Biomater, 2012, 8(11):4162-4172
|
[20] |
Jung GY, Park YJ, Han JS.Effects of HA released calcium ion on osteoblast differentiation[J].J Mater Sci Mater Med, 2010, 21(5):1649-1654
|
[21] |
Ros-Tárraga P, Rabadan-Ros R, Murciano A, et al.Assessment of effects of Si-Ca-P biphasic ceramic on the osteogenic differentiation of a population of multipotent adult human stem cells[J].Materials (Basel), 2016, 9(12):969-
|