口腔生物医学 ›› 2021, Vol. 12 ›› Issue (1): 26-29.

• 论著 • 上一篇    下一篇

3D打印多孔磷酸镁生物陶瓷支架的制备及其体外骨诱导能力的研究

张金灿,庄海,张怡雯,朱博文,毛秋怡,卜寿山   

  1. 南京医科大学第一附属医院口腔科
  • 收稿日期:2020-08-26 修回日期:2021-01-30 出版日期:2021-03-25 发布日期:2021-04-01
  • 通讯作者: 卜寿山 E-mail:bushsh@vip.sina.com
  • 基金资助:
    国家自然科学基金;江苏省卫生厅项目

Preparation of porous magnesium phosphate bioceramic scaffolds with 3D printing technology and its effect on osteoinductive capability in vitro

  • Received:2020-08-26 Revised:2021-01-30 Online:2021-03-25 Published:2021-04-01

摘要: 目的:应用3D打印技术及致孔剂浸出法制备具有两种不同尺度孔隙的磷酸镁多孔支架,研究其物理化学性能及骨诱导能力。方法:通过间接打印法制备多孔磷酸镁(MgP)支架,利用NaCl(粒径25~50?μm)作为致孔剂引入微孔制备磷酸镁-微孔支架(MgP-Na);通过扫描电镜、压汞仪、通用材料试验机及X线衍射仪检测磷酸镁支架的物理及化学性能;应用CCK8试剂盒和DAPI染色检测人骨髓间充质干细胞(hBMSC)在支架上的增殖和黏附;采用茜素红染色和碱性磷酸酶(ALP)定量实验评估支架促hBMSC成骨分化的能力。结果:MgP-Na支架具有更高的孔隙率(P<0.05),同时微孔的存在明显降低了MgP-Na支架的压缩强度(P<0.05)。两组支架均具有良好的生物相容性,hBMSC可在支架上黏附与增殖,并且微孔结构更有利于细胞的黏附(P<0.05)。MgP-Na支架对于hBMSC的钙沉积和成骨分化具有更加积极的作用(P<0.05)。结论:磷酸镁支架有望成为修复骨缺损的新型骨组织工程支架,MgP-Na支架的微孔结构在体外骨诱导中起到了积极有效的作用。

关键词: 磷酸镁, 生物陶瓷支架, 3D打印, 孔隙率, 成骨诱导

Abstract: Objective:?To investigate the physicochemical properties and osteoinductive potential of magnesium phosphate scaffold with two different scale pores prepared by 3D printing technology and porogen leaching. Methods: Magnesium phosphate scaffolds (MgP) were prepared by indirect printing method. We used sodium chloride (particle size 25-50 μm) as porogen to fabricate microporous magnesium phosphate scaffolds (MgP-Na). The physical and chemical properties of magnesium phosphate scaffolds were examined by scanning electron microscopy, mercury porosimetry, general material testing machine and X-ray diffraction. CCK8 and DAPI staining were used to detect the proliferation and adhesion of human bone marrow mesenchymal stem cells (hBMSCs) seeded on scaffolds. Alizarin red staining and alkaline phosphatase quantitative assay were used to evaluate the ability of scaffolds to promote the osteogenic differentiation of hBMSCs. Results:MgP-Na scaffolds showed higher porosity, and the micropores significantly reduced the compressive strength of MgP-Na scaffolds (P<0.05). Both scaffolds possessed excellent biocompatibility, and hBMSCs can adhere and proliferate on the scaffolds (P<0.05). Moreover, the microporous structure was more conducive to cell adhesion. MgP-Na scaffolds played a more active role in calcium deposition and osteogenic differentiation of hBMSCs seeded on scaffolds (P<0.05). Conclusions: Magnesium phosphate scaffold is expected to be a new material for bone defects repairing. The microporous structure of MgP-Na scaffold plays a more effective role in osteoinduction.

Key words: magnesium phosphate;?bioceramic scaffolds;?3D printing;?porosity, ?osteoinduction