口腔生物医学 ›› 2022, Vol. 13 ›› Issue (4): 255-260.
张蕾1,陶狄坷2,孙瑶1
收稿日期:
2022-04-25
修回日期:
2022-08-15
出版日期:
2022-12-25
发布日期:
2022-12-24
通讯作者:
孙瑶
E-mail:yaosun@tongji.edu.cn
Received:
2022-04-25
Revised:
2022-08-15
Online:
2022-12-25
Published:
2022-12-24
摘要: 初级纤毛作为信号传感器,存在于大多数哺乳动物细胞表面,干细胞表面的初级纤毛通过感知化学、机械、生物等多种信号感在维持细胞干性、介导细胞谱系分化过程中发挥重要作用。初级纤毛结构或功能异常可导致纤毛病,导致颅颌面发育异常、长骨发育障碍等骨骼相关表型异常。本文旨在整合初级纤毛在骨骼系统发育相关干细胞领域内的相关研究工作,聚焦于初级纤毛对骨骼发育相关干细胞的精细调控作用,以期为干细胞治疗及组织工程再生提供一个新的潜在治疗靶点。
张蕾 陶狄坷 孙瑶. 初级纤毛调节干细胞分化促进骨发育的研究进展[J]. 口腔生物医学, 2022, 13(4): 255-260.
[1] | Lowery JW, Rosen V.The BMP Pathway and Its Inhibitors in the Skeleton. [J].Physiol Rev. , 2018, 98(4):2431-2452 |
[2] | Murshed M.Mechanism of Bone Mineralization[J].Cold Spring Harb Perspect Med. , 2018, 8(12):a031229-a031229 |
[3] | Shu HS, Liu YL, Tang XT, et al.Tracing the skeletal progenitor transition during postnatal bone formation. [J].Cell Stem Cell., 2021, 28(12):2122-2136 |
[4] | Mizuhashi K, Ono W, Matsushita Y, et al.Resting zone of the growth plate houses a unique class of skeletal stem cells.[J].Nature. , 2018, 563(7730):254-258 |
[5] | Debnath S, Yallowitz AR, McCormick J, et al.Discovery of a periosteal stem cell mediating intramembranous bone formation.[J].Nature., 2018, 562(7725):133-139 |
[6] | Donsante S, Palmisano B, Serafini M, et al.From Stem Cells to Bone-Forming Cells.[J].Int J Mol Sci., 2021, 22(8):3989-3989 |
[7] | Pala R, Alomari N, Nauli S.Primary Cilium-Dependent Signaling Mechanisms.[J].International Journal of Molecular Sciences., 2017, 18(11):2272-2272 |
[8] | Anvarian Z, Mykytyn K, Mukhopadhyay S, et al.Cellular signalling by primary cilia in development, organ function and disease.[J].Nature Reviews Nephrology., 2019, 15(4):199-219 |
[9] | Bangs F, Anderson KV.Primary Cilia and Mammalian Hedgehog Signaling.[J].Cold Spring Harb Perspect Biol., 2017, 9(5):a028175-a028175 |
[10] | Martin L, Kaci N, Estibals V, et al.Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. [J].Hum Mol Genet., 2018, 27(1):1-13 |
[11] | Sun S, Fisher RL, Bowser SS, et al.Three-dimensional architecture of epithelial primary cilia.[J].Proc Natl Acad Sci U S A., 2019, 116(19):9370-9379 |
[12] | Truong ME, Bilekova S, Choksi SP, et al.Vertebrate cells differentially interpret ciliary and extraciliary cAMP.[J].Cell., 2021, 184(11):2911-2926 |
[13] | Ritter A, Louwen F, Yuan J.Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy?[J].Obes Rev., 2018, 19(10):1317-1328 |
[14] | Ho EK, Stearns T.Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. [J].Development., 2021, 148(9):dev195552-dev195552 |
[15] | Reiter JF, Leroux MR.Genes and molecular pathways underpinning ciliopathies.[J].Nat Rev Mol Cell Biol., 2017, 18(9):533-547 |
[16] | Li S, Zhang H, Sun Y.Primary cilia in hard tissue development and diseases.[J].Front Med., 2021, 15(5):657-678 |
[17] | Kopinke D, Norris AM, Mukhopadhyay S.Developmental and regenerative paradigms of cilia regulated hedgehog signaling.[J].Semin Cell Dev Biol. , 2021, 110(-):89-103 |
[18] | Gong X, Qian H, Cao P, et al.Structural basis for the recognition of Sonic Hedgehog by human Patched1.[J].Science., 2018, 361(6402):eaas8935-eaas8935 |
[19] | Yanardag S, Pugacheva EN.Primary Cilium Is Involved in Stem Cell Differentiation and Renewal through the Regulation of Multiple Signaling Pathways.[J].Cells., 2021, 10(6):1428-1428 |
[20] | Loo CKC, Pearen MA, Ramm GA.The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes.[J].Int J Mol Sci., 2021, 22(18):9854-9854 |
[21] | Xiang Y, Li X, Zhan Z, et al.A Novel Nonsense GLI3 Variant Is Associated With Polydactyly and Syndactyly in a Family by Blocking the Sonic Hedgehog Signaling Pathway. [J].Front Genet. , 2020, 11(-):542004-542004 |
[22] | Ohba S.Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action. [J].Int J Mol Sci., 2020, 21(18):6665-6665 |
[23] | Bechtold TE, Kurio N, Nah HD, et al.The Roles of Indian Hedgehog Signaling in TMJ Formation.[J].Int J Mol Sci., 2019, 20(24):6300-6300 |
[24] | Han S, Park HR, Lee EJ, et al.Dicam promotes proliferation and maturation of chondrocyte through Indian hedgehog signaling in primary cilia.[J].Osteoarthritis Cartilage., 2018, 26(7):945-953 |
[25] | Clevers H.Wnt/beta-catenin signaling in development and disease.[J].Cell., 2006, 127(3):469-480 |
[26] | Nusse R, Clevers H.Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. [J].Cell., 2017, 169(6):985-999 |
[27] | Duan P, Bonewald LF.The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. [J].Int J Biochem Cell Biol. , 2016, 77(Pt A):23-29 |
[28] | Janda CY, Dang LT, You C, et al.Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling.[J].Nature., 2017, 545(7653):234-237 |
[29] | Zhou J, Gao YH, Zhu BY, et al.Sinusoidal Electromagnetic Fields Increase Peak Bone Mass in Rats by Activating Wnt10b/β-Catenin in Primary Cilia of Osteoblasts. [J].J Bone Miner Res., 2019, 34(7):1336-1351 |
[30] | Oichi T, Otsuru S, Usami Y, et al.Wnt signaling in chondroprogenitors during long bone development and growth. [J].Bone. , 2020, 137(-):115368-115368 |
[31] | Huang P, Yan R, Zhang X, et al.Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities.[J].Pharmacol Ther. , 2019, 196(-):79-90 |
[32] | Gencer S, Oleinik N, Kim J, et al.TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis.[J].Science Signaling., 2017, 10(502):eaam7464-eaam7464 |
[33] | Elsafadi M, Manikandan M, Atteya M, et al.SERPINB2 is a novel TGFβ-responsive lineage fate determinant of human bone marrow stromal cells. [J].Sci Rep. , 2017, 7(1):10797-10797 |
[34] | Heldin CH, Moustakas A.Signaling Receptors for TGF-β Family Members. [J].Cold Spring Harb Perspect Biol. , 2016, 8(8):a022053-a022053 |
[35] | AlMegbel AM, Shuler CF.SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis.[J].Differentiation., 2020, 111(-):60-69 |
[36] | Wang W, Rigueur D, Lyons KM.TGFβ as a gatekeeper of BMP action in the developing growth plate. [J].Bone. , 2020, 137(-):115439-115439 |
[37] | Lekvijittada K, Hosomichi J, Maeda H, et al.Intermittent hypoxia inhibits mandibular cartilage growth with reduced TGF-β and SOX9 expressions in neonatal rats.[J].Sci Rep. , 2021, 11(1):1140-1140 |
[38] | Zhang P, Zhang H, Lin J, et al.Insulin impedes osteogenesis of BMSCs by inhibiting autophagy and promoting premature senescence via the TGF-β1 pathway. [J].Aging (Albany NY)., 2020, 12(3):2084-2100 |
[39] | Yang L, Shi P, Zhao G, et al.Targeting cancer stem cell pathways for cancer therapy. [J].Signal Transduct Target Ther., 2020, 5(1):8-8 |
[40] | Wang S, Livingston MJ, Su Y, et al.Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. [J].Autophagy., 2015, 11(4):607-616 |
[41] | Li H, Li D, Ma Z, et al.Defective autophagy in osteoblasts induces endoplasmic reticulum stress and causes remarkable bone loss. [J].Autophagy. , 2018, 14(10):1726-1741 |
[42] | Fu S, Zhang C, Yan X, et al.Primary Cilia as a Biomarker in Mesenchymal Stem Cells Senescence: Influencing Osteoblastic Differentiation Potency Associated with Hedgehog Signaling Regulation. [J].Stem Cells Int., 2021, 2021(-):8850114-8850114 |
[43] | Hoey DA, Tormey S, Ramcharan S, et al.Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. [J].Stem Cells. , 2012, 30(11):2561-2570 |
[44] | Reiprich S, Akova E, Aszódi A, et al.Hyaluronan Synthases' Expression and Activity Are Induced by Fluid Shear Stress in Bone Marrow-Derived Mesenchymal Stem Cells. [J].Int J Mol Sci., 2021, 22(6):3123-3123 |
[45] | Li YH, Zhu D, Cao Z, et al.Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts. [J].Am J Physiol Cell Physiol., 2020, 318(1):c73-c82 |
[46] | Ma Z, Qin M, Liang H, et al.Primary cilia-dependent signaling is involved in regulating mesenchymal stem cell proliferation and pluripotency maintenance. [J].Journal of Molecular Histology., 2020, 51(3):241-250 |
[47] | Gan H, Xue W, Gao Y, et al.KIF5B modulates central spindle organization in late-stage cytokinesis in chondrocytes. [J].Cell Biosci., 2019, 9(-):85-85 |
[48] | Moore ER, Yang Y, Jacobs CR.Primary cilia are necessary for Prx1-expressing cells to contribute to postnatal skeletogenesis. [J].J Cell Sci., 2018, 131(16):jcs217828-jcs217828 |
[49] | Upadhyai P, Guleria VS, Udupa P.Characterization of primary cilia features reveal cell-type specific variability in in vitro models of osteogenic and chondrogenic differentiation. [J].PeerJ. , 2020, 8(-):e9799-e9799 |
[50] | Coveney CR, Zhu L, Miotla-Zarebska J, et al.Role of Ciliary Protein Intraflagellar Transport Protein 88 in the Regulation of Cartilage Thickness and Osteoarthritis Development in Mice. [J].Arthritis Rheumatol. , 2022, 74(1):49-59 |
[51] | Liu M, Alharbi M, Graves D, et al.IFT80 Is Required for Fracture Healing Through Controlling the Regulation of TGF-β Signaling in Chondrocyte Differentiation and Function. [J].J Bone Miner Res., 2020, 35(3):571-582 |
[52] | Ortinau LC, Wang H, Lei K, et al.Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells.[J].Cell Stem Cell., 2019, 25(6):784-796 |
[53] | Zhang N, Hu L, Cao Z, et al.Periosteal Skeletal Stem Cells and Their Response to Bone Injury. [J].Front Cell Dev Biol. , 2022, 10(-):812094-812094 |
[54] | Moore ER, Zhu YX, Ryu HS, et al.Periosteal progenitors contribute to load-induced bone formation in adult mice and require primary cilia to sense mechanical stimulation. [J].Stem Cell Research & Therapy., 2018, 9(1):190-190 |
[55] | Wang T, Zhang X, Bikle DD.Osteogenic Differentiation of Periosteal Cells During Fracture Healing. [J].J Cell Physiol., 2017, 232(5):913-921 |
[1] | 陆大壮 张萍 周永胜. 间充质干细胞成骨向分化的分子调控机制探索[J]. 口腔生物医学, 2022, 13(3): 135-141. |
[2] | 罗鹏 胡江天. 细胞超微结构的观察及力学调控研究进展[J]. , 2013, 4(3): 158-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||