[1] |
Ferracane JL.Resin composite--state of the art[J].Dent Mater, 2011, 27(1):29-38
|
[2] |
Gitalis R, Bae JH, Preston M, et al.Human neutrophils compromise the restoration-tooth interface[J].Acta Biomater, 2020, 117( ):283-293
|
[3] |
Huang B, Siqueira WL, Cvitkovitch DG, et al.Esterase from a cariogenic bacterium hydrolyzes dental resins[J].Acta Biomater, 2018, 71:330-338
|
[4] |
Chang MC, Lin LD, Chuang FH, et al.Carboxylesterase expression in human dental pulp cells: role in regulation of BisGMA-induced prostanoid production and cytotoxicity[J].Acta Biomater, 2012, 8(3):1380-1387
|
[5] |
Nedeljkovic I, De Munck J, Ungureanu AA, et al.Biofilm-induced changes to the composite surface[J].J Dent, 2017, 63:36-43
|
[6] |
Spencer P, Ye Q, Misra A, et al.Proteins,pathogens,and failure at the composite-tooth interface[J].J Dent Res, 2014, 93(12):1243-1249
|
[7] |
Huang B, Sadeghinejad L, Adebayo OIA, et al.Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives[J].Acta Biomater, 2018, 81:158-168
|
[8] |
Marashdeh MQ, Gitalis R, Levesque C, et al.Enterococcus faecalis Hydrolyzes Dental Resin Composites and Adhesives[J].J Endod, 2018, 44(4):609-613
|
[9] |
Soehnlein O, Steffens S, Hidalgo A, et al.Neutrophils as protagonists and targets in chronic inflammation[J].Nat Rev Immunol, 2017, 17(4):248-261
|
[10] |
Gitalis R, Zhou L, Marashdeh MQ, et al.Human neutrophils degrade methacrylate resin composites and tooth dentin[J].Acta Biomater, 2019, 88:325-331
|
[11] |
Shokati B, Tam LE, Santerre JP, et al.Effect of salivary esterase on the integrity and fracture toughness of the dentin-resin interface[J].J Biomed Mater Res B Appl Biomater, 2010, 94(1):230-237
|
[12] |
Finer Y, Jaffer F, Santerre JP.Mutual influence of cholesterol esterase and pseudocholinesterase on the biodegradation of dental composites[J].Biomaterials, 2004, 25(10):1787-1793
|
[13] |
Stewart CA, Finer Y.Biostable,antidegradative and antimicrobial restorative systems based on host-biomaterials and microbial interactions[J].Dent Mater, 2019, 35(1):36-52
|
[14] |
Huang B, Cvitkovitch DG, Santerre JP, et al.Biodegradation of resin-dentin interfaces is dependent on the restorative material, mode of adhesion, esterase or MMP inhibition [J]. Dent Mater, 2018 34 (9): 1253-1262.[J].Dent Mater, 2018, 34(9):1253-1262
|
[15] |
Skaff O, Pattison DI, Davies MJ.The vinyl ether linkages of plasmalogens are favored targets for myeloperoxidase-derived oxidants: a kinetic study[J].Biochemistry, 2008, 47(31):8237-8245
|
[16] |
汪嘉, 何智妍, 冉淑君.耐氟变形链球菌对树脂-牙本质粘接强度的影响[J].上海口腔医学, 2018, 27(3):239-243
|
[17] |
Serkies KB, Garcha R, Tam LE, et al.Matrix metalloproteinase inhibitor modulates esterase-catalyzed degradation of resin-dentin interfaces [J]. Dent Mater, 2016 32(12): 1513-1523.
|
[18] |
郭馨蔚.变形链球菌及其耐氟菌株对CAD/CAM陶瓷粘接的影响 [D]; 吉林大学, 2020.
|
[19] |
Mainjot AK, Dupont NM, Oudkerk JC, et al.From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites[J].J Dent Res, 2016, 95(5):487-495
|
[20] |
郭馨蔚, 张志民, 赵洪岩.陶瓷材料的分类及研究进展[J].口腔生物医学, 2019, 10(02):109-113
|
[21] |
Lambert H, Durand JC, Jacquot B, et al.Dental biomaterials for chairside CADCAM: State of the art[J].J Adv Prosthodont, 2017, 9(6):486-495
|
[22] |
Stewart CA, Hong JH, Hatton BD, et al.Antimicrobial antidegradative dental adhesive preserves restoration-tooth bond[J].Dent Mater, 2020, 36(12):1666-1679
|
[23] |
Delaviz Y, Nascimento MA, Laschuk MW, et al.Synthesis and characterization of Ciprofloxacin-containing divinyl oligomers and assessment of their biodegradation in simulated salivary esterase[J].Dent Mater, 2018, 34(5):711-725
|
[24] |
Cherchali FZ, Attik N, Mouzali M, et al.Structural stability of DHMAI antibacterial dental composite following in vitro biological aging[J].Dent Mater, 2020, 36(9):1161-1169
|
[25] |
Salmanli M, Tatar Yilmaz G, Tuzuner T.Investigation of the antimicrobial activities of various antimicrobial agents on Streptococcus Mutans Sortase A through computer-aided drug design (CADD) approaches[J].Comput Methods Programs Biomed, 2021, 212:106454-
|
[26] |
Sun S, Wang GL, Huang Y, et al.The effects of 2-hydroxyethyl methacrylate on matrix metalloproteinases 2 and 9 in human pulp cells and odontoblast-like cells in vitro[J].Int Endod J, 2018, 51 Suppl 2:157-
|
[27] |
Delaviz Y, Finer Y, Santerre JP.Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges[J].Dent Mater, 2014, 30(1):16-32
|
[28] |
Chaussain-Miller C, Fioretti F, Goldberg M, et al.The role of matrix metalloproteinases (MMPs) in human caries[J].J Dent Res, 2006, 85(1):22-32
|
[29] |
Bourgi R, Daood U, Bijle MN, et al.Reinforced Universal Adhesive by Ribose Crosslinker: A Novel Strategy in Adhesive Dentistry [J]. Polymers (Basel), 2021, 13(5).
|
[30] |
Phan AC, Tang ML, Nguyen JF, et al.High-temperature high-pressure polymerized urethane dimethacrylate-mechanical properties and monomer release[J].Dent Mater, 2014, 30(3):350-356
|
[31] |
Delaviz Y, Yang M, Santerre JP.Biodegradation Studies of Novel Fluorinated Di-Vinyl Urethane Monomers and Interaction of Biological Elements with Their Polymerized Films [J]. Polymers (Basel), 2017, 9(8).
|
[32] |
Liao Y, Brandt BW, Li J, et al.Fluoride resistance in Streptococcus mutans: a mini review[J].J Oral Microbiol, 2017, 9(1):1344509-
|
[33] |
Zhu L, Zhang Z, Liang J.Fatty-acid profiles and expression of the fabM gene in a fluoride-resistant strain of Streptococcus mutans[J].Arch Oral Biol, 2012, 57(1):10-14
|