1. 李跃华, et al. 骨质疏松症危险因素及中医证型与骨折的分析. in 世界中联第三届中医、中西医结合老年医学学术大会. 2010. 中国河南南阳.2. Zheng, G., et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. 2013. 49(1): p. 18-29.3. Jia, G., et al., N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. 2011. 7(12): p. 885-7.4. Michou, L., Epigenetics of bone diseases %J Joint Bone Spine. 2017. 85(6).5. Vu, L., Y. Cheng, and M.J.C.d. Kharas, The Biology of mA RNA Methylation in Normal and Malignant Hematopoiesis. 2019. 9(1): p. 25-33.6. Traube, F. and T.J.R.b. Carell, The chemistries and consequences of DNA and RNA methylation and demethylation. 2017. 14(9): p. 1099-1107.7. Roundtree, I.A., et al., Dynamic RNA Modifications in Gene Expression Regulation %J Cell %J. 2017. 169(7): p. 1187-1200.8. Coker, H., G. Wei, and N. Brockdorff, m6A modification of non-coding RNA and the control of mammalian gene expression %J Biochimica et Biophysica Acta. Gene Regulatory Mechanisms %J. 2019. 1862(3): p. 310-318.9. Meyer, K.D., et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons %J Cell %J. 2012. 149(7): p. 1635-1646.10. The RNA Methyltransferase Complex of WTAP, METTL3, and METTL14 Regulates Mitotic Clonal Expansion in Adipogenesis %J Molecular and Cellular Biology %J. 2018. 38(16).11. RNA N6-methyladenosine modification in cancers: current status and perspectives %J 细胞研究(英文版) %J Cell Research. 2018. 28(5): p. 507-517.12. Liu, J., et al., A METL3-METL14 complex mediates mammalian nuclear RNA N~6-adenosine methylation %J Nature chemical biology %J. 2014. 10(2): p. 93-95.13. Choe, J., et al., mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis %J Nature %J. 2018. 561(Sep.27 TN.7724): p. 556-560.14. Wang, H., B. Xu, and J. Shi, N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2 %J Gene: An International Journal Focusing on Gene Cloning and Gene Structure and Function %J. 2020. 722.15. Vu, L.P., et al., The N-6-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells %J Nature medicine %J. 2017. 23(11): p. 1369-1376.16. Wang, X., et al., Structural basis of N-6-adenosine methylation by the METTL3-METTL14 complex %J Nature %J. 2016. 534(Jun.18 TN.7608): p. 575-578.17. Wang, P., K. Doxtader, and Y.J.M.c. Nam, Structural Basis for Cooperative Function of Mettl3 and Mettl14 Methyltransferases. 2016. 63(2): p. 306-317.18. Schwartz, S., et al., Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ SitesPerturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5′ Sites %J %J Cell Reports, Vol 8, Iss 1. 2014.19. Sun, B., et al., Mammalian WTAP Is A Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase, in 2013国际基因组学大会论文集. 2013: 青岛. p. 95-95.20. Tian, C., et al., Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. 2019. 20(3).21. YTH Domain:A Family of N6-methyladenosine(m6A)Readers %J 基因组蛋白质组与生物信息学报(英文版) %J Genomics、Proteomics & Bioinformatics. 2018. 16(2): p. 99-107.22. Bokar, J., et al., Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. 1994. 269(26): p. 17697-704.23. Zhao, W., et al., Epigenetic Regulation of m 6 A Modifications in Human Cancer %J Molecular Therapy - Nucleic Acids. 2020. 19(C).24. Niu, Y., et al., RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. 2019. 18(1): p. 46.25. Li, J., et al., m6A demethylase FTO promotes hepatocellular carcinoma tumorigenesis via mediating PKM2 demethylation. 2019. 11(9): p. 6084-6092.26. Li, J., et al., The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. 2019. 512(3): p. 479-485.27. Yang, S., et al., mA mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. 2019. 10(1): p. 2782.28. Mauer, J., et al., Reversible methylation of mA in the 5' cap controls mRNA stability. 2017. 541(7637): p. 371-375.29. Liu, Y., et al., The AlkB Family of Fe (II)/Alpha-Ketoglutarate-Dependent Dioxygenases Modulates Embryogenesis through Epigenetic Regulation. 2018. 13(2): p. 136-143.30. Guo, X., et al., RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. 2020. 19(1): p. 91.31. Zhang, J., et al., ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. 2019. 75(3): p. 379-389.32. Mohan, M., et al., Human RAD51 paralogue RAD51C fosters repair of alkylated DNA by interacting with the ALKBH3 demethylase. 2019. 47(22): p. 11729-11745.33. Yanan, Y., L. Jianzhao, and H. Chuan, RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. %J Genes & development. 2015. 29(13).34. Kasowitz, S., et al., Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development. 2018. 14(5): p. e1007412.35. Alarcón, C., et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. 2015. 162(6): p. 1299-308.36. Wang, X., et al., N6-methyladenosine-dependent regulation of messenger RNA stability. 2014. 505(7481): p. 117-20.37. Meyer, K., et al., 5' UTR m(6)A Promotes Cap-Independent Translation. 2015. 163(4): p. 999-1010.38. Hu, L., et al., YTHDF1 Regulates Pulmonary Hypertension through Translational Control of MAGED1. 2021. 203(9): p. 1158-1172.39. Huang, T., et al., YTHDF2 promotes spermagonial adhesion through modulating MMPs decay via mA/mRNA pathway. 2020. 11(1): p. 37.40. Dorn, L., et al., The N-Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. 2019. 139(4): p. 533-545.41. 黎琮南, 李毅成, and 杨渊, m6A RNA甲基化在骨骼疾病中的作用The Role of RNA N6-Methyladenosine Modification in Skeletal Diseases %J 中国生物化学与分子生物学报 %J Chinese Journal of Biochemistry and Molecular Biology. 2020. 36(11): p. 1303-1311.42. Rachner, T.D., S. Khosla, and L.C. Hofbauer, Osteoporosis: now and the future %J The Lancet. 2011. 377(9773).43. Yang, T., et al., A road map for understanding molecular and genetic determinants of osteoporosis. 2020. 16(2): p. 91-103.44. Campi, G., et al., Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles. 2017. 9(44): p. 17274-17283.45. Gimble, J., et al., The function of adipocytes in the bone marrow stroma: an update. 1996. 19(5): p. 421-8.46. Kemp, J., et al., Using Mendelian randomization to investigate a possible causal relationship between adiposity and increased bone mineral density at different skeletal sites in children. 2016. 45(5): p. 1560-1572.47. Liu, Y., et al., Powerful bivariate genome-wide association analyses suggest the SOX6 gene influencing both obesity and osteoporosis phenotypes in males. 2009. 4(8): p. e6827.48. G, T.T., et al., Lean mass and not fat mass is associated with male proximal femur strength. %J Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2008. 23(2).49. Yan, G., et al., mA Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. 2020. 19: p. 421-436.50. Yao, Y., et al., viaMETTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway an mA-YTHDF2-dependent manner. 2019. 33(6): p. 7529-7544.51. Wu, Y., et al., Mettl3-mediated mA RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. 2018. 9(1): p. 4772.52. Li, D., et al., METTL3 Modulates Osteoclast Differentiation and Function by Controlling RNA Stability and Nuclear Export. 2020. 21(5).53. Liu, W., et al., GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. 2016. 7: p. 12794.54. Li, Y., et al., miR-149-3p Regulates the Switch between Adipogenic and Osteogenic Differentiation of BMSCs by Targeting FTO. 2019. 17: p. 590-600.55. Shen, G., et al., The GDF11-FTO-PPARγ axis controls the shift of osteoporotic MSC fate to adipocyte and inhibits bone formation during osteoporosis. 2018. 1864(12): p. 3644-3654.56. Zhang, Q., et al., The RNA demethylase FTO is required for maintenance of bone mass and functions to protect osteoblasts from genotoxic damage. 2019. 116(36): p. 17980-17989. |