[1] |
Genco R J, Borgnakke W S. Diabetes as a potential risk for periodontitis: association studies[J]. Periodontol 2000, 2020, 83(1): 40-45.
|
[2] |
Sapey E, Yonel Z, Edgar R, et al. The clinical and inflammatory relationships between periodontitis and chronic obstructive pulmonary disease[J]. J Clin Periodontol, 2020, 47(9): 1040-1052.
|
[3] |
Nibali L, Gkranias N, Mainas G, et al. Periodontitis and implant complications in diabetes[J]. Periodontol 2000, 2022, 90(1): 88-105.
|
[4] |
Jepsen S, Caton J G, Albandar J M, et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri‐Implant Diseases and Conditions[J]. Journal of clinical periodontology, 2018, 45: S219-S229.
|
[5] |
Teeuw W J, Kosho M X, Poland D C, et al. Periodontitis as a possible early sign of diabetes mellitus[J]. BMJ Open Diabetes Res Care, 2017, 5(1): e000326.
|
[6] |
Lalla E, Papapanou P N. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases[J]. Nat Rev Endocrinol, 2011, 7(12): 738-48.
|
[7] |
Liu J, Chen B, Bao J, et al. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration[J]. Stem Cell Res Ther, 2019, 10(1): 320.
|
[8] |
Li W, Huang X, Yu W, et al. Activation of Functional Somatic Stem Cells Promotes Endogenous Tissue Regeneration[J]. J Dent Res, 2022, 101(7): 802-811.
|
[9] |
Kato H, Taguchi Y, Tominaga K, et al. High Glucose Concentrations Suppress the Proliferation of Human Periodontal Ligament Stem Cells and Their Differentiation Into Osteoblasts[J]. J Periodontol, 2016, 87(4): e44-51.
|
[10] |
Zheng J, Chen S, Albiero M L, et al. Diabetes Activates Periodontal Ligament Fibroblasts via NF-κB In Vivo[J]. J Dent Res, 2018, 97(5): 580-588.
|
[11] |
Mosteiro L, Pantoja C, Alcazar N, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo[J]. Science, 2016, 354(6315): aaf4445.
|
[12] |
Oka S I, Chin A, Park J Y, et al. Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart[J]. Cardiovasc Res, 2020, 116(10): 1742-1755.
|
[13] |
Wu C Z, Yuan Y H, Liu H H, et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus[J]. BMC Oral Health, 2020, 20(1): 204.
|
[14] |
Preshaw P M, Alba A L, Herrera D, et al. Periodontitis and diabetes: a two-way relationship[J]. Diabetologia, 2012, 55(1): 21-31.
|
[15] |
Zhang R, Liang Q, Kang W, et al. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro[J]. Cell Biol Int, 2020, 44(1): 70-79.
|
[16] |
Jiao J, Jing W, Si Y, et al. The prevalence and severity of periodontal disease in Mainland China: Data from the Fourth National Oral Health Survey (2015-2016)[J]. J Clin Periodontol, 2021, 48(2): 168-179.
|
[17] |
Kominato H, Takeda K, Mizutani K, et al. Metformin accelerates wound healing by Akt phosphorylation of gingival fibroblasts in insulin-resistant prediabetes mice[J]. J Periodontol, 2022, 93(2): 256-268.
|
[18] |
Zhang D, Lin W, Jiang S, et al. Lepr-Expressing PDLSCs Contribute to Periodontal Homeostasis and Respond to Mechanical Force by Piezo1[J]. Adv Sci (Weinh), 2023, 10(29): e2303291.
|
[19] |
Wang L, Liu C, Wu F. Low-level laser irradiation enhances the proliferation and osteogenic differentiation of PDLSCs via BMP signaling[J]. Lasers Med Sci, 2022, 37(2): 941-948.
|
[20] |
Quan H, Dai X, Liu M, et al. Luteolin supports osteogenic differentiation of human periodontal ligament cells[J]. BMC Oral Health, 2019, 19(1): 229.
|
[21] |
Luo Y, Gou H, Chen X, et al. Lactate inhibits osteogenic differentiation of human periodontal ligament stem cells via autophagy through the MCT1-mTOR signaling pathway[J]. Bone, 2022, 162: 116444.
|
[22] |
Zhao P, Yue Z, Nie L, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates periodontal inflamm-aging[J]. J Clin Periodontol, 2021, 48(10): 1379-1392.
|
[23] |
Ebersole J L, Graves C L, Gonzalez O A, et al. Aging, inflammation, immunity and periodontal disease[J]. Periodontol 2000, 2016, 72(1): 54-75.
|
[24] |
Chen Y C, Liao B K, Lu Y F, et al. Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition[J]. PLoS Genet, 2019, 15(4): e1008058.
|
[25] |
Müller M, Schaefer M, F?h T, et al. Argonaute proteins regulate a specific network of genes through KLF4 in mouse embryonic stem cells[J]. Stem Cell Reports, 2022, 17(5): 1070-1080.
|
[26] |
Konishi H, Rahmawati F N, Okamoto N, et al. Discovery of Transcription Factors Involved in the Maintenance of Resident Vascular Endothelial Stem Cell Properties[J]. Mol Cell Biol, 2024, 44(1): 17-26.
|
[27] |
Katz J P, Perreault N, Goldstein B G, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach[J]. Gastroenterology, 2005, 128(4): 935-45.
|
[28] |
Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision[J]. Nature, 2020, 588(7836): 124-129.
|
[29] |
Blacher E, Tsai C, Litichevskiy L, et al. Aging disrupts circadian gene regulation and function in macrophages[J]. Nat Immunol, 2022, 23(2): 229-236.
|
[30] |
Li Y, Xiong Z, Jiang Y, et al. Klf4 deficiency exacerbates myocardial ischemia/reperfusion injury in mice via enhancing ROCK1/DRP1 pathway-dependent mitochondrial fission[J]. J Mol Cell Cardiol, 2023, 174: 115-132.
|
[31] |
Han Y, He M, Marin T, et al. Roles of KLF4 and AMPK in the inhibition of glycolysis by pulsatile shear stress in endothelial cells[J]. Proc Natl Acad Sci U S A, 2021, 118(21) : e2103982118.
|
[32] |
Miao Z F, Adkins-Threats M, Burclaff J R, et al. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation[J]. Cell Stem Cell, 2020, 26(6): 910-925.e6.
|
[33] |
Liu L, Cheng Y, Wang J, et al. Simulated Microgravity Suppresses Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting Oxidative Phosphorylation[J]. Int J Mol Sci, 2020, 21(24) : 9747.
|
[34] |
Hao Y, Wu M, Wang J. Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation[J]. Mol Cell Probes, 2020, 52: 101538.
|