口腔生物医学 ›› 2025, Vol. 16 ›› Issue (1): 48-52.
马艺宁,刘晓,程雪,乔春燕
收稿日期:
2024-09-11
修回日期:
2024-12-20
出版日期:
2025-02-25
发布日期:
2025-03-07
通讯作者:
乔春燕
E-mail:qiaochunyan0108@jlu.edu.cn
基金资助:
Received:
2024-09-11
Revised:
2024-12-20
Online:
2025-02-25
Published:
2025-03-07
摘要: 与传统的αβ T细胞不同,γδ T细胞不依赖主要组织相容性复合物(MHC)介导抗原识别,因此在癌症免疫治疗中具有巨大的应用潜力。本文就γδ T细胞的主要亚群及其在肿瘤微环境中的作用机制、免疫治疗策略进行综述,指出临床应用中需考虑的挑战和未来研究方向,为口腔鳞癌等肿瘤的免疫治疗提供新的思路。
马艺宁 刘晓 程雪 乔春燕. γδ T细胞的抗肿瘤作用机制及免疫治疗前景[J]. 口腔生物医学, 2025, 16(1): 48-52.
[1] | Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer [J]. Pharmacology & Therapeutics, 2020: 107753. |
[2] | Paijens S T, Vledder A, De Bruyn M, et al. Tumor-infiltrating lymphocytes in the immunotherapy era [J]. Cellular & Molecular Immunology, 2020. |
[3] | Davey M S, Willcox C R, Hunter S, et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets [J]. Nature Communications, 2018, 9(1). |
[4] | Lefranc M, Giudicelli V, Ginestoux C, et al. IMGT , the international ImMunoGeneTics information system [J]. ., 2003. |
[5] | Tanaka Y, Morita C T, Tanaka Y, et al. Natural and synthetic non-peptide antigens recognized by human γδ T cells [J]. Nature, 1995, 375(6527): 155–158. |
[6] | Lu H, Dai W, Guo J, et al. High Abundance of Intratumoral γδ T Cells Favors a Better Prognosis in Head and Neck Squamous Cell Carcinoma: A Bioinformatic Analysis [J]. Frontiers in Immunology, 2020, 11. |
[7] | Arias-Badia M, Chang R, Fong L. Γδ T cells as critical anti-tumor immune effectors [J]. Nature Cancer, 2024. |
[8] | Correia D V, Lopes A C, Silva-Santos B. Tumor cell recognition by γδ T lymphocytes [J]. OncoImmunology, 2013, 2(1): e22892. |
[9] | Li Y, Li G, Zhang J, et al. The Dual Roles of Human γδ T Cells: Anti-Tumor or Tumor-Promoting [J]. Frontiers in Immunology, 2021, 11. |
[10] | Yi M, Li T, Niu M, et al. Exploiting innate immunity for cancer immunotherapy [J]. Molecular Cancer, 2023, 22(1). |
[11] | Xiao Z, Wang S, Luo L, et al. Lkb1 orchestrates γδ T-cell metabolic and functional fitness to control IL-17-mediated autoimmune hepatitis [J]. Cellular & Molecular Immunology, 2024, 21(6): 546–560. |
[12] | Fichtner A S, Ravens S, Prinz I. Human γδ TCR Repertoires in Health and Disease [J]. Cells, 2020, 9(4): 800. |
[13] | Hu Y, Hu Q, Li Y, et al. Γδ T cells: origin and fate, subsets, diseases and immunotherapy [J]. Signal Transduction and Targeted Therapy, 2023, 8(1). |
[14] | Mensurado S, Blanco-Domínguez R, Silva-Santos B. The emerging roles of γδ T cells in cancer immunotherapy [J]. Nature Reviews Clinical Oncology, 2023, 20(3): 178–191. |
[15] | Maniar A, Zhang X, Lin W, et al. Human γδ T lymphocytes induce robust NK cell–mediated antitumor cytotoxicity through CD137 engagement [J]. Blood, 2010, 116(10): 1726–1733. |
[16] | Alexander A A Z, Maniar A, Cummings J-S, et al. Isopentenyl Pyrophosphate–Activated CD56+ γδ T Lymphocytes Display Potent Antitumor Activity toward Human Squamous Cell Carcinoma [J]. Clinical Cancer Research, 2008, 14(13): 4232–4240. |
[17] | Dhar P, Wu J D. NKG2D and its ligands in cancer [J]. Current Opinion in Immunology, 2018, 51: 55–61. |
[18] | Kim Y-S, Lee S-H, Park A H, et al. BTN1A1 is a novel immune checkpoint mutually exclusive to PD-L1 [J]. Journal for ImmunoTherapy of Cancer, 2024, 12(3): e008303. |
[19] | Gu S, Sachleben J R, Boughter C T, et al. Phosphoantigen-induced conformational change of butyrophilin 3A1 (BTN3A1) and its implication on Vγ9Vδ2 T cell activation [J]. Proceedings of the National Academy of Sciences, 2017, 114(35): E7311–E7320. |
[20] | Hsiao C-H C, Nguyen K, Jin Y, et al. Ligand-induced interactions between butyrophilin 2A1 and 3A1 internal domains in the HMBPP receptor complex [J]. Cell Chemical Biology, 2022, 29(6): 985-995.e5. |
[21] | Peigné C-M, Léger A, Gesnel M-C, et al. The Juxtamembrane Domain of Butyrophilin BTN3A1 Controls Phosphoantigen-Mediated Activation of Human Vγ9Vδ2 T Cells [J]. The Journal of Immunology, 2017, 198(11): 4228–4234. |
[22] | Sandstrom A, Peigné C-M, Léger A, et al. The Intracellular B30.2 Domain of Butyrophilin 3A1 Binds Phosphoantigens to Mediate Activation of Human Vγ9Vδ2 T Cells [J]. Immunity, 2014, 40(4): 490–500. |
[23] | Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases [J]. Cell Death & Disease, 2022, 13(3). |
[24] | Tatsuta T, Shiraishi A, Mountz J D. The Prodomain of Caspase-1 Enhances Fas-mediated Apoptosis through Facilitation of Caspase-8 Activation [J]. Journal of Biological Chemistry, 2000, 275(19): 14248–14254. |
[25] | Du Halgouet A, Darbois A, Alkobtawi M, et al. Role of MR1-driven signals and amphiregulin on the recruitment and repair function of MAIT cells during skin wound healing [J]. Immunity, 2023, 56(1): 78-92.e6. |
[26] | León-Lara X, Fichtner A S, Willers M, et al. Γδ T cell profiling in a cohort of preterm infants reveals elevated frequencies of CD83+ γδ T cells in sepsis [J]. Journal of Experimental Medicine, 2024, 221(7). |
[27] | Gao Z, Bai Y, Lin A, et al. Gamma delta T-cell-based immune checkpoint therapy: attractive candidate for antitumor treatment [J]. Molecular Cancer, 2023, 22(1). |
[28] | Brandes M, Willimann K, Bioley G, et al. Cross-presenting human T cells induce robust CD8+ T cell responses [J]. Proceedings of the National Academy of Sciences, 2009, 106(7): 2307–2312. |
[29] | Chan K F, Duarte J D G, Ostrouska S, et al. Γδ T Cells in the Tumor Microenvironment—Interactions With Other Immune Cells [J]. Frontiers in Immunology, 2022, 13. |
[30] | Muto M, Baghdadi M, Maekawa R, et al. Myeloid molecular characteristics of human γδ T cells support their acquisition of tumor antigen-presenting capacity [J]. Cancer Immunology, Immunotherapy, 2015, 64(8): 941–949. |
[31] | Ruf B, Greten T F, Korangy F. Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity [J]. Nature Reviews Cancer, 2023, 23(6): 351–371. |
[32] | Hu W, Shang R, Yang J, et al. Skin γδ T Cells and Their Function in Wound Healing [J]. Frontiers in Immunology, 2022, 13. |
[33] | Patil R S, Shah S U, Shrikhande S V, et al. IL17 producing γδT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients [J]. International Journal of Cancer, 2016, 139(4): 869–881. |
[34] | Meraviglia S, Lo Presti E, Tosolini M, et al. Distinctive features of tumor-infiltrating γδ T lymphocytes in human colorectal cancer [J]. OncoImmunology, 2017, 6(10): e1347742. |
[35] | Mikulak J, Oriolo F, Bruni E, et al. NKp46-expressing human gut-resident intraepithelial Vδ1 T cell subpopulation exhibits high antitumor activity against colorectal cancer [J]. JCI Insight, 2019, 4(24). |
[36] | Bruni E, Cimino M M, Donadon M, et al. Intrahepatic CD69+Vδ1 T cells re-circulate in the blood of patients with metastatic colorectal cancer and limit tumor progression [J]. Journal for ImmunoTherapy of Cancer, 2022, 10(7): e004579. |
[37] | Wu Y, Kyle-Cezar F, Woolf R T, et al. An innate-like Vδ1+ γδ T cell compartment in the human breast is associated with remission in triple-negative breast cancer [J]. Science Translational Medicine, 2019, 11(513): eaax9364. |
[38] | Zakeri N, Hall A, Swadling L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma [J]. Nature Communications, 2022, 13(1). |
[39] | Wu Y, Biswas D, Usaite I, et al. A local human Vδ1 T cell population is associated with survival in nonsmall-cell lung cancer [J]. Nature Cancer, 2022, 3(6): 696–709. |
[40] | Blazquez J-L, Benyamine A, Pasero C, et al. New Insights Into the Regulation of γδ T Cells by BTN3A and Other BTN/BTNL in Tumor Immunity [J]. Frontiers in Immunology, 2018, 9. |
[41] | Dieli F, Vermijlen D, Fulfaro F, et al. Targeting Human γδ T Cells with Zoledronate and Interleukin-2 for Immunotherapy of Hormone-Refractory Prostate Cancer [J]. Cancer Research, 2007, 67(15): 7450–7457. |
[42] | Wilhelm M, Kunzmann V, Eckstein S, et al. Γδ T cells for immune therapy of patients with lymphoid malignancies [J]. Blood, 2003, 102(1): 200–206. |
[43] | Kobayashi H, Tanaka Y, Yagi J, et al. Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma [J]. Cancer Immunology, Immunotherapy, 2011, 60(8): 1075–1084. |
[44] | Lang J M, Kaikobad M R, Wallace M, et al. Pilot trial of interleukin-2 and zoledronic acid to augment γδ T cells as treatment for patients with refractory renal cell carcinoma [J]. Cancer Immunology, Immunotherapy, 2011, 60(10): 1447–1460. |
[45] | Kouakanou L, Xu Y, Peters C, et al. Vitamin C promotes the proliferation and effector functions of human γδ T cells [J]. Cellular & Molecular Immunology, 2019, 17(5): 462–473. |
[46] | Hoh A, Dewerth A, Vogt F, et al. The activity of γδ T cells against paediatric liver tumour cells and spheroids in cell culture [J]. Liver International, 2012, 33(1): 127–136. |
[47] | Oberg H-H, Janitschke L, Sulaj V, et al. Bispecific antibodies enhance tumor-infiltrating T cell cytotoxicity against autologous HER-2-expressing high-grade ovarian tumors [J]. Journal of Leukocyte Biology, 2019, 107(6): 1081–1095. |
[48] | Oberg H-H, Peipp M, Kellner C, et al. Novel Bispecific Antibodies Increase γδ T-Cell Cytotoxicity against Pancreatic Cancer Cells [J]. Cancer Research, 2014, 74(5): 1349–1360. |
[49] | Oberg H-H, Kellner C, Gonnermann D, et al. Γδ T cell activation by bispecific antibodies [J]. Cellular Immunology, 2015, 296(1): 41–49. |
[50] | Tawfik D, Groth C, Gundlach J-P, et al. TRAIL-Receptor 4 Modulates γδ T Cell-Cytotoxicity Toward Cancer Cells [J]. Frontiers in Immunology, 2019, 10. |
[51] | Wang Y, Han J, Wang D, et al. Anti-PD-1 antibody armored γδ T cells enhance anti-tumor efficacy in ovarian cancer [J]. Signal Transduction and Targeted Therapy, 2023, 8(1). |
[52] | Mamedov M R, Vedova S, Freimer J W, et al. CRISPR screens decode cancer cell pathways that trigger γδ T cell detection [J]. Nature, 2023, 621(7977): 188–195. |
[53] | Straetemans T, Kierkels G J J, Doorn R, et al. GMP-Grade Manufacturing of T Cells Engineered to Express a Defined γδTCR [J]. Frontiers in Immunology, 2018, 9. |
[54] | Jin Y, Chen D, Cabay R J, et al. Role of microRNA-138 as a Potential Tumor Suppressor in Head and Neck Squamous Cell Carcinoma [M]//International Review of Cell and Molecular Biology. Elsevier, 2013: 357–385. |
[55] | Wei J, Nduom E K, Kong L-Y, et al. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints [J]. Neuro-Oncology, 2015, 18(5): 639–648. |
[56] | Li L, Lu S, Liang X, et al. γδTDEs: An Efficient Delivery System for miR-138 with Anti-tumoral and Immunostimulatory Roles on Oral Squamous Cell Carcinoma [J]. Molecular Therapy - Nucleic Acids, 2019, 14: 101–113. |
[57] | Gentles A J, Newman A M, Liu C L, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers [J]. Nature Medicine, 2015, 21(8): 938–945. |
[58] | Lo Presti E, Toia F, Oieni S, et al. Squamous Cell Tumors Recruit γδ T Cells Producing either IL17 or IFNγ Depending on the Tumor Stage [J]. Cancer Immunology Research, 2017, 5(5): 397–407. |
[59] | Chow L Q M. Head and Neck Cancer [J]. New England Journal of Medicine, 2020, 382(1): 60–72. |
[60] | Chi A C, Day T A, Neville B W. Oral cavity and oropharyngeal squamous cell carcinoma-an update [J]. CA: A Cancer Journal for Clinicians, 2015, 65(5): 401–421. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||