口腔生物医学 ›› 2025, Vol. 16 ›› Issue (2): 61-71.

• 论著 •    下一篇

基于单细胞测序和机器学习鉴定牙周炎氧化应激相关生物标志物

徐佳妮1,蒋欣泉2   

  1. 1. 上海交通大学医学院附属第九人民医院口腔修复科,上海交通大学口腔医学院,国家口腔医学中心,国家口腔疾病临床医学研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所
    2. 上海交通大学医学院附属第九人民医院?口腔医学院口腔修复科,国家口腔疾病临床医学研究中心,上海口腔医学先进技术与材料工程技术研究中心,上海市口腔医学重点实验室,上海市口腔医学研究所,上海?200011
  • 收稿日期:2025-02-18 修回日期:2025-03-18 出版日期:2025-04-25 发布日期:2025-05-08
  • 通讯作者: 蒋欣泉 E-mail:xinquanj@aliyun.com

Machine learning algorithms integrate bulk and single-cell RNA data to unveil oxidative stress following periodontitis

  • Received:2025-02-18 Revised:2025-03-18 Online:2025-04-25 Published:2025-05-08
  • Contact: Xinquan 无Jiang E-mail:xinquanj@aliyun.com

摘要: 目的:通过整合转录组测序(Bulk RNA-seq)、单细胞RNA测序(scRNA-seq)及机器学习算法,系统性识别牙周炎中与氧化应激相关的特征免疫细胞和差异表达基因并构建风险预测模型。方法:基于GEO数据库牙周炎相关基因表达谱数据,结合Bulk RNA-seq和scRNA-seq技术,系统分析牙周炎及其治疗过程中不同细胞层氧化应激活性的异质性。采用AUCELL、UCELL、SINGSCORE和ADDMODULESCORE算法对不同免疫细胞亚群进行氧化应激水平分析,进而综合随机森林、最小绝对收缩与选择算子(Lasso)回归以及人工神经网络(ANN)等机器学习算法筛选最佳特征基因,构建风险预测模型。结果:scRNA-seq分析结果显示,牙周炎中氧化应激活性在不同细胞层之间表现出异质性,单核细胞氧化应激活性显著增强。Bulk RNA-seq数据集中共鉴定出3 800个差异表达基因,其中111个为氧化应激相关差异表达基因。通过机器学习算法,筛选出4个关键氧化应激基因(NFE2L2、KDR、CXCL1、CYBB)在牙周炎患者显著变化(P<0.05),且与疾病风险高度相关(AUC=0.94)。结论:本研究揭示了牙周炎氧化应激水平的细胞异质性,系统性鉴定了牙周炎中的关键氧化应激基因及构建牙周炎风险预测模型。NFE2L2和CYBB可能通过调控单核细胞的迁移与浸润,穿透牙周屏障并定位于牙周组织,进一步加剧氧化应激活动。

关键词: 牙周炎, 氧化应激, 单细胞测序, 风险预测模型

Abstract: Objective:?This study aims to identify key immune cells and differentially expressed genes (DEGs) associated with oxidative stress (OS) in periodontitis by integrating bulk RNA sequencing (Bulk RNA-seq), single-cell RNA sequencing (scRNA-seq), and machine learning algorithms. Methods:?Periodontitis-related gene expression data were collected from the GEO database, to investigate the heterogeneity of OS across various cellular tiers following PD and treatment. Then, OS activity of different immune cell subgroups were evaluated using AUCELL, UCELL, SINGSCORE, and ADDMODULESCORE algorithms to identify key immune cells with high OS activity in periodontitis. Furthermore, machine learning models such as Random Forest, Least Absolute Shrinkage and Selection Operator regression, and Artificial Neural Network were employed to select the best feature genes and construct a risk prediction model. Results: Results from scRNA-seq dataset indicated that OS activity exhibited cellular heterogeneity following PD, with particularly heightened activity observed in monocytes. Next, 3 800 DEGs were identified, of which 111 were OS-related DEGs (OS-DEGs). Machine learning algorithms identified four key OS genes (NFE2L2, KDR, CXCL1, CYBB), which showed significant expression changes in periodontitis patients (P<0.05) and were highly associated with periodontitis risk. Conclusions: This study unveils the cellular heterogeneity of OS activity and systematically identifies key oxidative stress genes in periodontitis. NFE2L2 and CYBB may exacerbate OS activity by regulating monocyte migration and infiltration, penetrating the periodontal barrier.

Key words: periodontitis, oxidative stress, scRNA-seq, risk prediction model