[1]Fan D, Wu S, Liu L, et al.Prevalence of non-syndromic orofacial clefts: based on 15,094,978 Chinese perinatal infants[J].Oncotarget, 2018, 9(17):13981-13990[2]Birnbaum S, Ludwig KU, Reutter H, et al.Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24[J].Nat Genet, 2009, 41(4):473-477[3]Beaty TH, Taub MA, Scott AF, et al.Confirming genes influencing risk to cleft lip withwithout cleft palate in a case-parent trio study[J].Hum Genet, 2013, 132(7):771-781[4]Yu Y, Zuo X, He M, et al.Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J].Nat Commun, 2017, 8:14364-[5]Leslie EJ, Liu H, Carlson JC, et al.A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3[J].Am J Hum Genet, 2016, 98(4):744-754[6]Leslie EJ, Carlson JC, Shaffer JR, et al.A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J].Hum Mol Genet, 2016, 25(13):2862-2872[7]Beaty TH, Murray JC, Marazita ML, et al.A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J].Nat Genet, 2010, 42(6):525-529[8]Fonseca RF, de Carvalho FM, Poletta FA, et al.Family-based genome-wide association study in Patagonia confirms the association of the DMD locus and cleft lip and palate[J].Eur J Oral Sci, 2015, 123(5):381-384[9]Wolf ZT, Brand HA, Shaffer JR, et al.Genome-wide association studies in dogs and humans identify ADAMTS20 as a risk variant for cleft lip and palate[J].PLoS Genet, 2015, 11(3):e1005059-[10]Leslie EJ, Carlson JC, Shaffer JR, et al.Genome-wide meta-analyses of nonsyndromic orofacial clefts identify novel associations between FOXE1 and all orofacial clefts, and TP63 and cleft lip with or without cleft palate[J].Hum Genet, 2017, 136(3):275-286[11]Grant SF, Wang K, Zhang H, et al.A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24[J].J Pediatr, 2009, 155(6):909-913[12]Camargo M, Rivera D, Moreno L, et al.GWAS reveals new recessive loci associated with non-syndromic facial clefting[J].Eur J Med Genet, 2012, 55(10):510-514[13]Ludwig KU, Mangold E, Herms S, et al.Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J].Nat Genet, 2012, 44(9):968-971[14]Mangold E, Ludwig KU, Birnbaum S, et al.Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J].Nat Genet, 2010, 42(1):24-26[15]Sun Y, Huang Y, Yin A, et al.Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate[J].Nat Commun, 2015, 6:6414-[16]Younkin SG, Scharpf RB, Schwender H, et al.A genome-wide study of de novo deletions identifies a candidate locus for non-syndromic isolated cleft lip/palate risk[J].BMC Genet, 2014, 15:24-[17]Eshete MA, Liu H, Li M, et al.Loss-of-Function GRHL3 Variants Detected in African Patients with Isolated Cleft Palate[J].J Dent Res, 2018, 97(1):41-48[18]Mues G, Tardivel A, Willen L, et al.Functional analysis of Ectodysplasin-A mutations causing selective tooth agenesis[J].Eur J Hum Genet, 2010, 18(1):19-25[19]Shen W, Wang Y, Liu Y, et al.Functional Study of Ectodysplasin-A Mutations Causing Non-Syndromic Tooth Agenesis[J].PLoS One, 2016, 11(5):e0154884-[20]Sauna ZE, Kimchi-Sarfaty C.Understanding the contribution of synonymous mutations to human disease[J].Nat Rev Genet, 2011, 12(10):683-691[21]Makrythanasis P, Antonarakis SE.Pathogenic variants in non-protein-coding sequences[J].Clin Genet, 2013, 84(5):422-428[22]Zhu Y, Tazearslan C, Suh Y.Challenges and progress in interpretation of non-coding genetic variants associated with human disease[J].Exp Biol Med (Maywood), 2017, 242(13):1325-1334[23]Li MJ, Yan B, Sham PC, et al.Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression[J].Brief Bioinform, 2015, 16(3):393-412[24]ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genome[J].Nature, 2012, 489(7414):57-74[25]Thurman RE, Rynes E, Humbert R, et al.The accessible chromatin landscape of the human genome[J].Nature, 2012, 489(7414):75-82[26]Qu H, Fang X.A brief review on the Human Encyclopedia of DNA Elements (ENCODE) project[J].Genomics Proteomics Bioinformatics, 2013, 11(3):135-141[27]Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al.The NIH Roadmap Epigenomics Mapping Consortium[J].Nat Biotechnol, 2010, 28(10):1045-1048[28]Kundaje A, Meuleman W, Ernst J, et al.Integrative analysis of 111 reference human epigenomes[J].Nature, 2015, 518(7539):317-330[29]Boyle AP, Hong EL, Hariharan M, et al.Annotation of functional variation in personal genomes using RegulomeDB[J].Genome Res, 2012, 22(9):1790-1797[30]Ritchie GR, Dunham I, Zeggini E, et al.Functional annotation of noncoding sequence variants[J].Nat Methods, 2014, 11(3):294-296[31]Kircher M, Witten DM, Jain P, et al.A general framework for estimating the relative pathogenicity of human genetic variants[J].Nat Genet, 2014, 46(3):310-315[32]Khurana E, Fu Y, Colonna V, et al.Integrative annotation of variants from 1092 humans: application to cancer genomics[J].Science, 2013, 342(6154):1235587-[33]Shihab HA, Rogers MF, Gough J, et al.An integrative approach to predicting the functional effects of non-coding and coding sequence variation[J].Bioinformatics, 2015, 31(10):1536-1543[34]Pollard KS, Hubisz MJ, Rosenbloom KR, et al.Detection of nonneutral substitution rates on mammalian phylogenies[J].Genome Res, 2010, 20(1):110-121[35]Drubay D, Gautheret D, Michiels S.A benchmark study of scoring methods for non-coding mutations[J].Bioinformatics, 2018, 34(10):1635-1641[36]Natarajan A, Yardimci GG, Sheffield NC, et al.Predicting cell-type-specific gene expression from regions of open chromatin[J].Genome Res, 2012, 22(9):1711-1722[37]Dong X, Greven MC, Kundaje A, et al.Modeling gene expression using chromatin features in various cellular contexts[J].Genome Biol, 2012, 13(9):R53-[38]Phornphutkul C, Anikster Y, Huizing M, et al.The promoter of a lysosomal membrane transporter gene, CTNS, binds Sp-1, shares sequences with the promoter of an adjacent gene, CARKL, and causes cystinosis if mutated in a critical region[J].Am J Hum Genet, 2001, 69(4):712-721[39]Niimi T, Munakata M, Keck-Waggoner CL, et al.A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma[J].Am J Hum Genet, 2002, 70(3):718-725[40]Hu XZ, Lipsky RH, Zhu G, et al.Serotonin transporter promoter gain-of-function genotypes are linked to obsessive-compulsive disorder[J].Am J Hum Genet, 2006, 78(5):815-826[41]Theuns J, Brouwers N, Engelborghs S, et al.Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease[J].Am J Hum Genet, 2006, 78(6):936-946[42]Tuupanen S, Turunen M, Lehtonen R, et al.The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling[J].Nat Genet, 2009, 41(8):885-890[43]Cowper-Sal lari R, Zhang X, Wright JB, et al.Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression[J].Nat Genet, 2012, 44(11):1191-1198[44]Vernes SC, Spiteri E, Nicod J, et al.High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2,a gene mutated in speech and language disorders[J].Am J Hum Genet, 2007, 81(6):1232-1250[45]Simonis M, Kooren J, de Laat W.An evaluation of 3C-based methods to capture DNA interactions[J].Nat Methods, 2007, 4(11):895-901[46]Dekker J.The three 'C' s of chromosome conformation capture: controls,controls,controls[J].Nat Methods, 2006, 3(1):17-21[47]Zhao Z, Tavoosidana G, Sjolinder M, et al.Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions[J].Nat Genet, 2006, 38(11):1341-1347[48]van Berkum NL, Dekker J.Determining spatial chromatin organization of large genomic regions using 5C technology[J].Methods Mol Biol, 2009, 567:189-213[49]Gavrilov A, Eivazova E, Priozhkova I, et al.Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification[J].Methods Mol Biol, 2009, 567:171-188[50]Rao SS, Huntley MH, Durand NC, et al.A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping[J].Cell, 2014, 159(7):1665-1680[51]Smemo S, Tena JJ, Kim KH, et al.Obesity-associated variants within FTO form long-range functional connections with IRX3[J].Nature, 2014, 507(7492):371-375[52]Urnov FD, Rebar EJ, Holmes MC, et al.Genome editing with engineered zinc finger nucleases[J].Nat Rev Genet, 2010, 11(9):636-646[53]Miller JC, Tan S, Qiao G, et al.A TALE nuclease architecture for efficient genome editing[J].Nat Biotechnol, 2011, 29(2):143-148[54]Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823[55]Andrey G, Spielmann M.CRISPR/Cas9 Genome Editing in Embryonic Stem Cells[J].Methods Mol Biol, 2017, 1468:221-234[56]Zhang F, Lupski JR.Non-coding genetic variants in human disease[J].Hum Mol Genet, 2015, 24(R1):R102-R110[57]Sareen D, O' Rourke JG, Meera P, et al.Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion[J].Sci Transl Med, 2013, 5(208):208ra149-[58]Donnelly CJ, Zhang PW, Pham JT, et al.RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention[J].Neuron, 2013, 80(2):415-428[59]Ko E, Seo HW, Jung ES, et al.The TERT promoter SNP rs2853669 decreases E2F1 transcription factor binding and increases mortality and recurrence risks in liver cancer[J].Oncotarget, 2016, 7(1):684-699[60]Gong J, Tian J, Lou J, et al.A functional polymorphism in lnc-LAMC2-1:1 confers risk of colorectal cancer by affecting miRNA binding[J].Carcinogenesis, 2016, 37(5):443-451 |