[1]张兰心, 王钦玥, 王莹雪, 等.种植体多功能抗菌涂层的分类及进展[J].临床口腔医学杂志, 2017, 33(12):756-758[2]Mendon?a G, Mendon?a DB, Arag?o FJ, et al.Advancing dental implant surface technology--from micron- to nanotopography[J].Biomaterials, 2008, 29(28):3822-3835[3]Puckett SD, Taylor E, Raimondo T, et al.The relationship between the nanostructure of titanium surfaces and bacterial attachment[J].Biomaterials, 2010, 31(4):706-713[4]李洋洋, 胡天琦, 顾中一, 等.纳米齿科学在抗菌方面的应用进展[J].口腔医学, 2017, 37(10):950-953[5]Jaggessar A, Shahali H, Mathew A, et al.Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants[J].J Nanobiotechnology, 2017, 15(1):64-[6]Lorenzetti M, Dog?a I, Sto?icki T, et al.The influence of surface modification on bacterial adhesion to titanium-based substrates[J].ACS Appl Mater Interfaces, 2015, 7(3):1644-1651[7]Bhadra CM, Truong VK, Pham VT, et al.Antibacterial titanium nano-patterned arrays inspired by dragonfly wings[J].Sci Rep, 2015, 5:16817-[8]Liu L, Bhatia R, Webster TJ.Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants[J].Int J Nanomedicine, 2017, 12:8711-8723[9]徐瑞锟.纳米抗菌材料的研究进展[J].辽宁化工, 2013, 42(4):371-373[10]AshaRani PV, Low Kah Mun G, Hande MP, et al.Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J].ACS Nano, 2009, 3(2):279-290[11]Qin H, Cao H, Zhao Y, et al.In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium[J].Biomaterials, 2014, 35(33):9114-9125[12]Gao A, Hang R, Huang X, et al.The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts[J].Biomaterials, 2014, 35(13):4223-4235[13]陈海军, 张安生, 林均舟, 等.锌对钛种植体骨融合的影响[J].中国组织工程研究与临床康复, 2011, 15(51):9518-9522[14]周子瑜, 王娇龙, 廖岚.纳米氧化锌的抗菌机制及其在口腔治疗中的应用研究进展[J].南昌大学学报(医学版), 2017, 57(4):96-99[15]Memarzadeh K, Sharili AS, Huang J, et al.Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants[J].J Biomed Mater Res A, 2015, 103(3):981-989[16]Abdulkareem EH, Memarzadeh K, Allaker RP, et al.Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials[J].J Dent, 2015, 43(12):1462-1469[17]Wang J, Zhou H, Guo G, et al.Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense[J].ACS Appl Mater Interfaces, 2017, 9(39):33609-33623[18]王会珍.Cu纳米颗粒负载TiO_2多孔涂层的制备及其生物学性能研究[D].太原:太原理工大学, 2017.[19]Rosenbaum J, Versace DL, Abbad-Andallousi S, et al.Antibacterial properties of nanostructured Cu–TiO2 surfaces for dental implants[J].Biomaterials Sci, 2017, 5(3):455-462[20]Walton TR.The Up-to-14-Year Survival and Complication Burden of 256 TiUnite Implants Supporting One-Piece Cast Abutment/Metal-Ceramic Implant-Supported Single Crowns[J].Int J Oral Maxillofac Implants, 2016, 31(6):1349-1358[21]Zwilling V, Darque-Ceretti E, Boutry-Forveille A, et al.Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J].Surf Interface Anal, 1999, 27(7):629-637[22]Brammer KS, Oh S, Cobb CJ, et al.Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface[J].Acta Biomater, 2009, 5(8):3215-3223[23]Kumeria T, Mon H, Aw MS, et al.Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties[J].Colloids Surf B Biointerfaces, 2015, 130:255-263[24]Zhang Y, Zhang L, Li B, et al.Enhancement in Sustained Release of Antimicrobial Peptide from Dual-Diameter-Structured TiO2 Nanotubes for Long-Lasting Antibacterial Activity and Cytocompatibility[J].ACS Appl Mater Interfaces, 2017, 9(11):9449-9461[25]Grenho L, Manso MC, Monteiro FJ, et al.Adhesion of Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa onto nanohydroxyapatite as a bone regeneration material[J].J Biomed Mater Res A, 2012, 100(7):1823-1830[26]Liu X, Man HC.Laser fabrication of Ag-HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability[J].Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1):1-8[27]Heinemann C, Heinemann S, Bernhardt A, et al.Novel textile chitosan scaffolds promote spreading, proliferation, and differentiation of osteoblasts[J].Biomacromolecules, 2008, 9(10):2913-2920[28]Mattioli-Belmonte M, Cometa S, Ferretti C, et al.Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants[J].Carbohydr Polym, 2014, 110:173-182[29]Naskar D, Nayak S, Dey T, et al.Non-mulberry silk fibroin influence osteogenesis and osteoblast-macrophage cross talk on titanium based surface[J].Sci Rep, 2014, 4:4745-[30]Sharma S, Bano S, Ghosh AS, et al.Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface[J].Nanomedicine, 2016, 12(5):1193-1204 |