口腔生物医学 ›› 2021, Vol. 12 ›› Issue (4): 262-266.
朱悦1,顾佳颖1,代杰文2
收稿日期:
2021-03-16
修回日期:
2021-07-31
出版日期:
2021-12-25
发布日期:
2022-01-04
通讯作者:
代杰文
E-mail:daijiewen@163.com
基金资助:
Received:
2021-03-16
Revised:
2021-07-31
Online:
2021-12-25
Published:
2022-01-04
摘要: 创伤性异位骨化(THO)常发生于外伤或手术后,表现为在软组织中形成异位的骨组织,是临床中较为常见的现象和并发症。THO的发生是多种因素共同作用的结果,本文就THO发生的分子机制相关研究进展进行综述。
朱悦 顾佳颖 代杰文. 创伤性异位骨化相关调控因子及信号通路研究进展[J]. 口腔生物医学, 2021, 12(4): 262-266.
[1] | Ranganathan K, Loder S, Agarwal S, et al. Heterotopic Ossification: Basic-Science Principles and Clinical Correlates[J]. Journal of Bone & Joint Surgery-american Volume, 2015, 97(13):1101-1111. |
[2] | Casavant AM, Hill Hastings II. Heterotopic Ossification about the Elbow: A Therapist's Guide to Evaluation and Management[J]. Journal of Hand Therapy, 2006, 19(2):255-267. |
[3] | Schwarzkopf R, Cohn RM, Skoda EC, et al. The predictive power of preoperative hip range of motion for the development of heterotopic ossification[J]. Orthopedics, 2011, 34(3):169. |
[4] | Foster N, Kornhaber R, McGarry S, et al. Heterotopic Ossification in adults following a burn: A phenomenological analysis[J]. Burns,2017, 43(6):1250-1262. |
[5] | Linan E , O’Dell, Michael W, et al. Continuous passive motion in the management of heterotopic ossification in a brain injured patient[J]. American Journal of Physical Medicine & Rehabilitation, 2001, 80(8):614-617. |
[6] | Foley KL, Hebela N, Keenan MA, et al. Histopathology of periarticular non-hereditary heterotopic ossification[J]. Bone,2018,109:65-70. |
[7] | Zhao Y, Liu P, Chen Q, et al. Development process of traumatic heterotopic ossification of the temporomandibular joint in mice[J]. J Craniomaxillofac Surg,2019,47(7):1155-1161. |
[8] | Wang X, Li F, Xie L, et al. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice[J]. Nat Commun,2018,9(1):551. |
[9] | Mao D, Pan X, Rui Y, et al. Matrine attenuates heterotopic ossification by suppressing TGF-β induced mesenchymal stromal cell migration and osteogenic differentiation[J]. Biomed Pharmacother,2020,127:110152. |
[10] | Sorkin M, Huber AK, Hwang C, et al. Regulation of heterotopic ossification by monocytes in a mouse model of aberrant wound healing[J]. Nat Commun,2020,11(1):722. |
[11] | Li L, Tuan RS. Mechanism of traumatic heterotopic ossification: In search of injury-induced osteogenic factors[J]. J Cell Mol Med,2020,24(19):11046-11055. |
[12] | Xu J, Liu J, Gan Y, et al. High-Dose TGF-β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition[J]. J Bone Miner Res, 2020,35(1):167-180. |
[13] | Deschaseaux F, Sensébé L, Heymann D. Mechanisms of bone repair and regeneration[J]. Trends Mol Med,2009,15(9):417‐429. |
[14] | Yu PB, Deng DY, Lai CS, et al. Erratum: BMP type I receptor inhibition reduces heterotopic ossification[J]. Nat Med,2008,14(12):1363-9. |
[15] | Sun DM, Liu ZB, Zhao Y, et al. Runx2 is involved in regulating osterix promoter activity and gene expression[J].Sheng wu hua xue yu Sheng wu wu li jin Zhan,2006,33(10):957-964. |
[16] | Agarwal S, Loder SJ, Breuler C, et al. Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification[J]. Molecular Therapy the Journal of the American Society of Gene Therapy,2017,25(8):1974-1987. |
[17] | Evans KN, Potter BK, Brown TS, et al. Osteogenic gene expression correlates with development of heterotopic ossification in war wounds[J]. Clin Orthop Relat Res,2014,472(2):396-404. |
[18] | Peterson JR, De La Rosa S, Eboda O, et al. Treatment of heterotopic ossification through remote ATP hydrolysis[J]. Sci Transl Med,2014,6(255):255ra132. |
[19] | Kan L, Kessler JA . Animal Models of Typical Heterotopic Ossification[J]. Journal of Biomedicine and Biotechnology,2011, 2011(263):309287. |
[20] | Hashimoto K, Kaito T, Furuya M. et al. In vivo dynamic analysis of BMP-2-induced ectopic bone formation[J]. Sci Rep,2020,10(1):4751. |
[21] | Kan L, Hu M, Gomes WA, et al. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype[J]. Am J Pathol,2004,165(4):1107-1115. |
[22] | Yan YB, Li JM, Xiao E, et al. A pilot trial on the molecular pathophysiology of traumatic temporomandibular joint bony ankylosis in a sheep model. Part II: The differential gene expression among fibrous ankylosis, bony ankylosis and condylar fracture[J]. J Craniomaxillofac Surg,2014,42(2):e23‐e28. |
[23] | Chen, D., Harris, M., Rossini, G. et al. Bone Morphogenetic Protein 2 (BMP-2) Enhances BMP-3, BMP-4, and Bone Cell Differentiation Marker Gene Expression During the Induction of Mineralized Bone Matrix Formation in Culturesof Fetal Rat Calvarial Osteoblasts[J]. Calcif Tissue Int,1997,60(3):283-90. |
[24] | Li L , Jiang Y , Lin H , et al. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production[J]. Journal of Orthopaedic Translation,2019,18:142-153. |
[25] | Leblanc E , Frédéric Trensz, Haroun S , et al. BMP-9-induced muscle heterotopic ossification requires changes to the skeletal muscle microenvironment[J]. Journal of Bone & Mineral Research, 2011, 26(6):1166-1177. |
[26] | Kim JM, Yang YS, Park KH, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation[J]. Nat Commun,2020,11(1):2289. |
[27] | Kan L, Lounev VY, Pignolo RJ, et al. Substance P signaling mediates BMP-dependent heterotopic ossification[J]. J Cell Biochem,2011,112(10):2759-72. |
[28] | Alman BA. The role of hedgehog signalling in skeletal health and disease[J].Nat Rev Rheumatol,2015,11(9):552-60. |
[29] | Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease[J]. Nat Rev Mol Cell Biol,2013,14(7):416-429. |
[30] | Kan C, Chen L, Hu Y, et al. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification[J]. Bone, 2018,109:71-79. |
[31] | Kan C , Ding N , Yang J , et al. BMP-dependent, injury-induced stem cell niche as a mechanism of heterotopic ossification[J]. Stem Cell Research & Therapy, 2019,10(1):14. |
[32] | Zhang D, Schwarz EM, Rosier RN, et al. ALK2 functions as a BMP type I receptor and induces Indian hedgehog in chondrocytes during skeletal development[J]. J Bone Miner Res, 2003,18(9):1593-604. |
[33] | Minina E, Wenzel HM, Kreschel C, et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation[J]. Development,2001,128(22):4523-34. |
[34] | Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell,2012,149(6):1192-205. |
[35] | Zhao Y, Ouyang N, Chen L, et al. Stimulating Factors and Origins of Precursor Cells in Traumatic Heterotopic Ossification Around the Temporomandibular Joint in Mice[J]. Front Cell Dev Biol,2020,8:445. |
[36] | Komori T. Roles of Runx2 in Skeletal Development[J]. Adv Exp Med Biol,2017,962:83-93. |
[37] | Tu B, Liu S, Yu B, et al. miR-203 inhibits the traumatic heterotopic ossification by targeting Runx2[J]. Cell Death Dis,2016,7(10):e2436. |
[38] | Feng L, Zhang JF, Shi L, et al. MicroRNA-378 Suppressed Osteogenesis of MSCs and Impaired Bone Formation via Inactivating Wnt/β-Catenin Signaling[J]. Mol Ther Nucleic Acids,2020,21:1017-1028. |
[39] | Yang B, Li S, Chen Z, et al. Amyloid β peptide promotes bone formation by regulating Wnt/β-catenin signaling and the OPG/RANKL/RANK system[J]. FASEB J,2020,34(3):3583-3593. |
[40] | Qu F, Wang J, Xu N, et al. WNT3A modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCs[J]. Front Biosci (Landmark Ed),2013,18:493-503. |
[41] | Kan C, Chen L, Hu Y, et al. Conserved signaling pathways underlying heterotopic ossification[J]. Bone,2018,109:43-48. |
[42] | Weston AD, Chandraratna RA, Torchia J, et al. Requirement for RAR-mediated gene repression in skeletal progenitor differentiation[J]. J Cell Biol,2002,158(1):39-51. |
[43] | Chakkalakal SA, Uchibe K, Convente MR, et al. Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1(R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation[J]. J Bone Miner Res,2016,31(9):1666-75. |
[44] | Shimono K, Tung WE, Macolino C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists[J]. Nat Med,2011,17(4):454-60. |
[45] | Rajicic N, Cuschieri J, Finkelstein DM, et al. Identification and interpretation of longitudinal gene expression changes in trauma[J]. PLoS One,2010,5(12):e14380. |
[46] | Agarwal S, Loder S, Brownley C, et al. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification[J]. Proc Natl Acad Sci U S A,2016,113(3):E338-E347. |
[47] | Lin L, Shen Q, Leng H, et al. Synergistic inhibition of endochondral bone formation by silencing Hif1α and Runx2 in trauma-induced heterotopic ossification[J]. Mol Ther,2011,19(8):1426-1432. |
[48] | Huang YF, Wang XY, Lin H. The hypoxic microenvironment: a driving force for heterotopic ossification progression[J]. Cell communication and signaling : CCS,2020,18(1):20. |
[49] | Zhang Q, Zhang Y, Yan M, et al. βig-h3 enhances chondrogenesis via promoting mesenchymal condensation in rat Achilles tendon heterotopic ossification model[J]. Aging (Albany NY),2020,12(8):7030-7041. |
[50] | Zhang J, Wang L, Chu J, et al. Macrophage-derived neurotrophin-3 promotes heterotopic ossification in rats[J]. Lab Invest,2020,100(5):762-776. |
[51] | Su YW, Chim SM, Zhou L, et al. Osteoblast derived-neurotrophin?3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats[J]. Bone,2018,116:232-247. |
[52] | Zhang J, Wang L, Cao H, et al. Neurotrophin-3 acts on the endothelial-mesenchymal transition of heterotopic ossification in rats[J]. J Cell Mol Med,2019,23(4):2595-2609. |
[53] | Yuasa M, Mignemi NA, Nyman JS, et al. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification[J]. J Clin Invest,2015,125(8):3117-31. |
[1] | 殷实 蒋欣泉. 新型外分泌蛋白Nell-1的研究进展[J]. , 2018, 9(3): 159-162. |
[2] | 邓云贞 李珏丹 魏虹 石建峰 李昂 苟建重. BMP-2促进人炎症牙髓干细胞骨向诱导分化的体外研究[J]. , 2015, 6(2): 71-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||