[1] |
Gong T., Heng B.C., Lo E.C.M., et al., Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy, Stem Cells International 2016 (2016) 1-13.
|
[2] |
Yang J., Yuan G., Chen Z., Pulp Regeneration: Current Approaches and Future Challenges, Front Physiol 7 (2016) 58.
|
[3] |
Sui B., Chen C., Kou X., et al., Pulp Stem Cell-Mediated Functional Pulp Regeneration, J Dent Res 98(1) (2019) 27-35.
|
[4] |
Sharma S., Sikri V., Sharma N.K., et al., Regeneration of tooth pulp and dentin : trends and advances, Annals of Neurosciences 17(01) (2010) 31-43.
|
[5] |
Li X., Ma C., Xie X., et al., Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system, Acta Biomater 35 (2016) 57-67.
|
[6] |
Mathieu S., Jeanneau C., Sheibat-Othman N., et al., Usefulness of controlled release of growth factors in investigating the early events of dentin-pulp regeneration, J Endod 39(2) (2013) 228-35.
|
[7] |
Zhang R., Xie L., Wu H., et al., Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration, Acta biomaterialia (2020).
|
[8] |
van Wezel A.L., Growth of cell-strains and primary cells on micro-carriers in homogeneous culture, Nature 216(5110) (1967) 64-5.
|
[9] |
Brun-Graeppi A.K., Richard C., Bessodes M., et al., Cell microcarriers and microcapsules of stimuli-responsive polymers, J Control Release 149(3) (2011) 209-24.
|
[10] |
Zein N., Harmouch E., Lutz J.C., et al., Polymer-Based Instructive Scaffolds for Endodontic Regeneration, Materials (Basel) 12(15) (2019).
|
[11] |
Leong W., Wang D.A., Cell-laden Polymeric Microspheres for Biomedical Applications, Trends Biotechnol 33(11) (2015) 653-666.
|
[12] |
Galler K.M., D'Souza R.N., Hartgerink J.D., et al., Scaffolds for dental pulp tissue engineering, Adv Dent Res 23(3) (2011) 333-9.
|
[13] |
Kuang R., Zhang Z., Jin X., et al., Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells, Adv Healthc Mater 4(13) (2015) 1993-2000.
|
[14] |
Caron M.M., Emans P.J., Coolsen M.M., et al., Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures, Osteoarthritis Cartilage 20(10) (2012) 1170-8.
|
[15] |
Li B., Wang X., Wang Y., et al., Past, present, and future of microcarrier-based tissue engineering, J Orthop Translat 3(2) (2015) 51-57.
|
[16] |
Chang B., Ahuja N., Ma C., et al., Injectable scaffolds: Preparation and application in dental and craniofacial regeneration, Mater Sci Eng R Rep 111 (2017) 1-26.
|
[17] |
Manaspon C., Boonprakong L., Porntaveetus T., et al., Preparation and characterization of Jagged1-bound fibrinogen-based microspheres and their cytotoxicity against human dental pulp cells, J Biomater Appl 34(8) (2020) 1105-1113.
|
[18] |
Kuang R., Zhang Z., Jin X., et al., Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp, Acta Biomater 33 (2016) 225-34.
|
[19] |
Vegas A.J., Veiseh O., Gurtler M., et al., Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice, Nat Med 22(3) (2016) 306-11.
|
[20] |
Daly A.C., Riley L., Segura T., et al., Hydrogel microparticles for biomedical applications, Nature Reviews Materials 5(1) (2019) 20-43.
|
[21] |
Leong D., Setzer F., Trope M., et al., Biocompatibility of two experimental scaffolds for regenerative endodontics, Restorative dentistry & endodontics 41(2) (2016) 98-105.
|
[22] |
Xie M., Gao Q., Zhao H., et al., Electro-Assisted Bioprinting of Low-Concentration GelMA Microdroplets, Small 15(4) (2019) e1804216.
|
[23] |
Zhao X., Liu S., Yildirimer L., et al., Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs, Advanced Functional Materials 26(17) (2016) 2809-2819.
|
[24] |
He Q., Liao Y., Zhang J., et al., "All-in-One" Gel System for Whole Procedure of Stem-Cell Amplification and Tissue Engineering, Small 16(16) (2020) e1906539.
|
[25] |
Garzon I., Martin-Piedra M.A., Carriel V., et al., Bioactive injectable aggregates with nanofibrous microspheres and human dental pulp stem cells: A translational strategy in dental endodontics, J Tissue Eng Regen Med 12(1) (2018) 204-216.
|
[26] |
Zou H., Wang G., Song F., et al., Investigation of Human Dental Pulp Cells on a Potential Injectable Poly(lactic-co-glycolic acid) Microsphere Scaffold, J Endod 43(5) (2017) 745-750.
|
[27] |
Bhuptani R.S., Patravale V.B., Porous microscaffolds for 3D culture of dental pulp mesenchymal stem cells, Int J Pharm 515(1-2) (2016) 555-564.
|
[28] |
Kankala R. K.,?Zhao Jia,?Liu C.G.,?et al., Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery, Small 15(25) (2019) 1901397.
|
[29] |
Wei D.X., Dao J.W., Chen G.Q., A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration, Adv Mater 30(31) (2018) e1802273.
|
[30] |
Yan X., Zhang K., Yang Y., et al., Dispersible and Dissolvable Porous Microcarrier Tablets Enable Efficient Large-Scale Human Mesenchymal Stem Cell Expansion, Tissue Eng Part C Methods 26(5) (2020) 263-275.
|
[31] |
Yang T., Zhang Q., Xie L., et al., hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration, Materials Science and Engineering: C 121 (2021).
|
[32] |
Colton C.K., Oxygen supply to encapsulated therapeutic cells, Advanced Drug Delivery Reviews 67-68 (2014) 93-110.
|
[33] |
Adler M.,?Erickstad M.,?Gutierrez E.,?Groisman A., Studies of bacterial aerotaxis in a microfluidic device, Lab Chip 12(22) (2012) :4835-4847.
|
[34] |
Fan C.J.,?Wang D.A., Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering, Tissue Eng Part B Rev?23(5) (2017):451-461.
|
[35] |
Yue K., Trujillo-de S. G., Alvarez M.M., Tamayol A., Annabi N., Khademhosseini A., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials 73 (2015) 254–271.
|