[1] |
王培欢,刘洪臣 人工种植牙载药方式及材料的研究进展[J].口腔颌面修复学杂志2017,18(6)354-358
|
[2] |
Wang L, Liu X. Sustained Release Technology and Its Application in Environmental Remediation: A Review[J]. International Journal of Environmental Research and Public Health 2019;16(12).
|
[3] |
程佳蕙,吴雨峰,王泽华等,TiO2纳米管负载米诺环素的释放动力学研究[J] .安徽医科大学学报2020,55( 2),210-214
|
[4] |
Wang T, Weng Z, Liu X, et al. Controlled release and biocompatibility of polymer/titania nanotube array system on titanium implants[J]. Bioact Mater 2017;2(1):44-50.
|
[5] |
Mu C, Hu Y, Huang L, et al. Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits[J]. Mater Sci Eng C Mater Biol Appl 2018;82:345-53.
|
[6] |
Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating[J]. Mater Sci Eng C Mater Biol Appl 2019;103:109743.
|
[7] |
Bagherifard S. Mediating bone regeneration by means of drug eluting implants: From passive to smart strategies[J]. Mater Sci Eng C Mater Biol Appl 2017;71:1241-52.
|
[8] |
Xu J, Zhou X, Gao Z, et al. Visible-Light-Triggered Drug Release from TiO2 Nanotube Arrays: A Controllable Antibacterial Platform[J]. Angewandte Chemie International Edition 2016;55(2):593-7.
|
[9] |
Zhou J, Frank MA, Yang Y, et al. A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Mater Sci Eng C Mater Biol Appl 2018;82:277-83.
|
[10] |
Wei J, Wang Y, Wang L. Layer-by-layer: A Simple and Effective Way to Construct Antibacterial Surfaces[J]. Curr Pharm Des 2019;25(2):105-6.
|
[11] |
Zhao S, Caruso F, Dahne L, et al. The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mohwald[J]. ACS Nano 2019;13(6):6151-69.
|
[12] |
Grohmann S, Menne M, Hesse D, et al. Biomimetic multilayer coatings deliver gentamicin and reduce implant-related osteomyelitis in rats[J]. Biomed Tech (Berl) 2019;64(4):383-95.
|
[13] |
Yuan P, Qiu X, Wang X, et al. Substrate-Independent Coating with Persistent and Stable Antifouling and Antibacterial Activities to Reduce Bacterial Infection for Various Implants[J]. Adv Healthc Mater 2019;8(8):e1801423.
|
[14] |
Macdonald ML, Samuel RE, Shah NJ, et al. Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants[J]. Biomaterials 2011;32(5):1446-53.
|
[15] |
Hu Y, Cai K, Luo Z, et al. Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces[J]. Biomaterials 2012;33(13):3515-28.
|
[16] |
Huang L, Luo Z, Hu Y, et al. Enhancement of local bone remodeling in osteoporotic rabbits by biomimic multilayered structures on Ti6Al4V implants[J]. J Biomed Mater Res A 2016;104(6):1437-51.
|
[17] |
刘育豪 袁泉 张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志.2019, 46(2)228-33.
|
[18] |
He Y, Mu C, Shen X, et al. Peptide LL-37 coating on micro-structured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment[J]. Acta Biomaterialia 2018;80:412-24.
|
[19] |
Nie B, Long T, Ao H, et al. Covalent Immobilization of Enoxacin onto Titanium Implant Surfaces for Inhibiting Multiple Bacterial Species Infection and In Vivo Methicillin-Resistant Staphylococcus aureus Infection Prophylaxis[J]. Antimicrob Agents Chemother 2017;61(1).
|
[20] |
Zhou L, Lin Z, Ding J, et al. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization[J]. Colloids Surf B Biointerfaces 2017;160:581-8.
|
[21] |
Masters KS. Covalent growth factor immobilization strategies for tissue repair and regeneration[J]. Macromol Biosci 2011;11(9):1149-63.
|
[22] |
毛文文, 茹江英. 羟基磷灰石类陶瓷在骨组织工程中的研究与更广泛应用[J]. 中国组织工程研究 2018, 22(30) 4855-4863.
|
[23] |
Asri RI, Harun WS, Hassan MA, et al. A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals[J]. J Mech Behav Biomed Mater 2016;57:95-108.
|
[24] |
Zhu X, Zhang H, Zhang X, et al. In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces[J]. Dent Mater J 2017;36(5):677-85.
|
[25] |
Safi S, Karimzadeh F, Labbaf S. Mesoporous and hollow hydroxyapatite nanostructured particles as a drug delivery vehicle for the local release of ibuprofen[J]. Mater Sci Eng C Mater Biol Appl 2018;92:712-9.
|
[26] |
Liu HW, Wei DX, Deng JZ, et al. Combined antibacterial and osteogenic in situ effects of a bifunctional titanium alloy with nanoscale hydroxyapatite coating[J]. Artif Cells Nanomed Biotechnol 2018;46(sup3):S460-S70.
|
[27] |
Kwon YD, Yang DH, Lee DW. A Titanium Surface-Modified with Nano-Sized Hydroxyapatite and Simvastatin Enhances Bone Formation and Osseintegration[J]. J Biomed Nanotechnol 2015;11(6):1007-15.
|
[28] |
Bose S, Vu AA, Emshadi K, et al. Effects of polycaprolactone on alendronate drug release from Mg-doped hydroxyapatite coating on titanium[J]. Mater Sci Eng C Mater Biol Appl 2018;88:166-71.
|
[29] |
Edelmann AR, Patel D, Allen RK, et al. Retrospective analysis of porous tantalum trabecular metal-enhanced titanium dental implants[J]. J Prosthet Dent 2019;121(3):404-10.
|
[30] |
Lu RJ, Wang X, He HX, et al. Tantalum-incorporated hydroxyapatite coating on titanium implants: its mechanical and in vitro osteogenic properties[J]. J Mater Sci Mater Med 2019;30(10):111.
|
[31] |
Guo X, Chen M, Feng W, et al. Electrostatic self-assembly of multilayer copolymeric membranes on the surface of porous tantalum implants for sustained release of doxorubicin[J]. Int J Nanomedicine 2011;6:3057-64.
|
[32] |
Bencharit S, Byrd WC, Altarawneh S, et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants[J]. Clin Implant Dent Relat Res 2014;16(6):817-26.
|
[33] |
Tuckermann JP, Tang Z, Xie Y, et al. Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo[J]. PLoS One 2013;8(6).
|