[1] |
Krawczyk B, Wityk P, Galecka M, et al.The Many Faces of Enterococcus spp-Commensal,Probiotic and Opportunistic Pathogen[J].Microorganisms, 2021, 9(9):1900-1920
|
[2] |
Gaca A O, Lemos J A.Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci[J].Microbiol Mol Biol Rev, 2019, 83(3):e00008-00019
|
[3] |
Francisco P A, Fagundes P, Lemes-Junior J C, et al.Pathogenic potential of Enterococcus faecalis strains isolated from root canals after unsuccessful endodontic treatment[J].Clin Oral Investig, 2021, 25(9):5171-5179
|
[4] |
Tang S, Zhang H, Mei L, et al.Fucoidan-derived carbon dots against Enterococcus faecalis biofilm and infected dentinal tubules for the treatment of persistent endodontic infections[J].J Nanobiotechnology, 2022, 20(1):321-337
|
[5] |
Huang X Q, Qiu J K, Wang C H, et al.Sepsis secondary to multifocal Enterococcus faecium infection: A case report[J].Medicine (Baltimore), 2020, 99(27):e19811-e19811
|
[6] |
李峰, 邓巍, 孟萍.不同根管冲洗方案对感染根管模型粪肠球菌清除效果的比较[J].中华老年口腔医学杂志, 2022, 20(5):261-266
|
[7] |
Momenijavid M, Salimizand H, Korani A, et al.Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm[J].Scientific Reports, 2022, 12(1):7595-7606
|
[8] |
Bradley J M, Svistunenko D A, Wilson M T, et al.Bacterial iron detoxification at the molecular level[J].J Biol Chem, 2020, 295(51):17602-17623
|
[9] |
Vogt A S, Arsiwala T, Mohsen M, et al.On Iron Metabolism and Its Regulation[J].Int J Mol Sci, 2021, 22(9):4591-4608
|
[10] |
Spiga L, Fansler R T, Perera Y R, et al.Iron acquisition by a commensal bacterium modifies host nutritional immunity during Salmonella infection[J].Cell Host Microbe, 2023, 31(10):1639-1654
|
[11] |
Brunson D N, Colomer-Winter C, Lam L N, et al.Identification of Multiple Iron Uptake Mechanisms in Enterococcus faecalis and Their Relationship to Virulence[J].Infect Immun, 2023, 2022(5):e0049622-e0049622
|
[12] |
Zhang S, Xin W, Anderson G J, et al.Double-edge sword roles of iron in driving energy production versus instigating ferroptosis[J].Cell Death Dis, 2022, 13(1):40-53
|
[13] |
Lopez G, Latorre M, Reyes-Jara A, et al.Transcriptomic response of Enterococcus faecalis to iron excess[J].Biometals, 2012, 25(4):737-747
|
[14] |
Latorre M, Quenti D, Travisany D, et al.The Role of Fur in the Transcriptional and Iron Homeostatic Response of Enterococcus faecalis[J].Front Microbiol, 2018, 9(10.3389/fmicb.2018.01580):1580-1592
|
[15] |
Keogh D, Lam L N, Doyle L E, et al.Extracellular Electron Transfer Powers Enterococcus faecalis Biofilm Metabolism[J].mBio, 2018, 9(2):e00626-00617
|
[16] |
Weinberg E D.The Lactobacillus anomaly: total iron abstinence[J].Perspect Biol Med, 1997, 40(4):578-583
|
[17] |
Abe C, Miyazawa T, Miyazawa T.Current Use of Fenton Reaction in Drugs and Food[J].Molecules, 2022, 27(17):5451-5464
|
[18] |
Ali I A A, Cheung G S P, Neelakantan P.Transition metals and Enterococcus faecalis: Homeostasis,virulence and perspectives[J].Mol Oral Microbiol, 2022, 37(6):276-291
|
[19] |
Fontenot C R, Ding H.Ferric uptake regulator (Fur) binds a [2Fe-2S] cluster to regulate intracellular iron homeostasis in Escherichia coli[J].Journal of Biological Chemistry, 2023, 299(6):104748-104758
|
[20] |
Teramoto H, Inui M, Yukawa H.OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R[J].FEBS J, 2013, 280(14):3298-3312
|
[21] |
Fornelos N, Browning D F, Butala M.The Use and Abuse of LexA by Mobile Genetic Elements[J].Trends Microbiol, 2016, 24(5):391-401
|
[22] |
Andrews S C, Robinson A K, Rodríguez-Qui?ones F.Bacterial iron homeostasis[J].FEMS Microbiol Rev, 2003, 27(2-3):215-237
|
[23] |
Baschant U, Altamura S, Steele-Perkins P, et al.Iron effects versus metabolic alterations in hereditary hemochromatosis driven bone loss[J].Trends Endocrinol Metab, 2022, 33(9):652-663
|
[24] |
Badawy S M, Nemeth E, Forsyth M T, et al.Does Gene Therapy in Beta Thalassemia Normalize Novel Markers of Ineffective Erythropoiesis and Iron Homeostasis?[J].Blood, 2019, 134(Supplement_1):816-816
|
[25] |
Buhnik-Rosenblau K, Moshe-Belizowski S, Danin-Poleg Y, et al.Genetic modification of iron metabolism in mice affects the gut microbiota[J].Biometals, 2012, 25(5):883-892
|
[26] |
Jimenez Pacheco H G, Portocarrero Banda A A, Vilca Cayllahua E I, et al.New Electrogenic Microorganism Citrobacter spIsolated from Microbial Fuel Cell and Bacterial Characteristics Determination[J].Energies, 2023, 16(7):3047-3060
|
[27] |
Pankratova G, Leech D, Gorton L, et al.Extracellular Electron Transfer by the Gram-Positive Bacterium Enterococcus faecalis[J].Biochemistry, 2018, 57(30):4597-4603
|
[28] |
Hoiby N, Bjarnsholt T, Moser C, et al.ESCMID guideline for the diagnosis and treatment of biofilm infections 2014[J].Clin Microbiol Infect, 2015, 21(Supplement 1):S1-25
|
[29] |
Goh H M S, Yong M H A, Chong K K L, et al.Model systems for the study of Enterococcal colonization and infection[J].Virulence, 2017, 8(8):1525-1562
|
[30] |
Hughes E R, Winter S E.Enterococcus faecalis: Ecoli's Siderophore-Inducing Sidekick[J].Cell Host Microbe, 2016, 20(4):411-412
|
[31] |
Keogh D, Tay Wei H, Ho Yao Y, et al.Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection[J].Cell Host & Microbe, 2016, 20(4):493-503
|
[32] |
Heemstra.J R,WalshC T,Sattely. E S. Enzymatic tailoring of ornithine in the biosynthesis of the Rhizobium cyclic trihydroxamate siderophore vicibactin.[J].Journal of the American Chemical Society, 2009, 131(42):15317-15329
|
[33] |
Drews D J, Nguyen A D, Diederich A, et al.The Interaction of Two Widely Used Endodontic Irrigants,Chlorhexidine and Sodium Hypochlorite,and Its Impact on the Disinfection Protocol during Root Canal Treatment[J].Antibiotics (Basel), 2023, 12(3):589-607
|
[34] |
Pandey A, Boros E.Coordination Complexes to Combat Bacterial Infections: Recent Developments,Current Directions and Future Opportunities[J].Chemistry, 2021, 27(26):7340-7350
|
[35] |
Hider R C, Hoffbrand A V.The Role of Deferiprone in Iron Chelation[J].N Engl J Med, 2018, 379(22):2140-2150
|
[36] |
Thompson M G, Corey B W, Si Y, et al.Antibacterial activities of iron chelators against common nosocomial pathogens[J].Antimicrob Agents Chemother, 2012, 56(10):5419-5421
|
[37] |
Richter K, Thomas N, Claeys J, et al.A Topical Hydrogel with Deferiprone and Gallium-Protoporphyrin Targets Bacterial Iron Metabolism and Has Antibiofilm Activity[J].Antimicrob Agents Chemother, 2017, 61(6):e00481-00417
|
[38] |
Moreau-Marquis S, O' Toole G A, Stanton B A.Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells[J].Am J Respir Cell Mol Biol, 2009, 41(3):305-313
|
[39] |
Salm J, Bohme T, Noory E, et al.Arterial leg ulcers-Bacterial patterns,antimicrobial resistance and clinical characteristics,a retrospective single-centre cohort,2012-2021[J].PLoS One, 2023, 18(8):e0290103-e0290103
|
[40] |
Estrela C, Costa E S R, Urban R C, et al.Demetallization of Enterococcus faecalis biofilm: a preliminary study[J].J Appl Oral Sci, 2018, 26(10.1590/1678-7757-2017-0374):e20170374-e20170374
|
[41] |
Vinuesa V, McConnell M J.Recent Advances in Iron Chelation and Gallium-Based Therapies for Antibiotic Resistant Bacterial Infections[J].Int J Mol Sci, 2021, 22(6):2876-2895
|
[42] |
Post S J, Shapiro J A, Wuest W M.Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance[J].Medchemcomm, 2019, 10(4):505-512
|
[43] |
Xu Z, Zhao X, Chen X, et al.Antimicrobial effect of gallium nitrate against bacteria encountered in burn wound infections[J].RSC Advances, 2017, 7(82):52266-52273
|
[44] |
Tang D, Kroemer G.Ferroptosis[J].Current Biology, 2020, 30(21):R1292-R1297
|
[45] |
Vo T N, Kang J E, Lee H, et al.Ultra‐stable calcium ion batteries with Prussian blue nanodisks[J].EcoMat, 2022, 5(2):e12285-e12285
|
[46] |
Zhao X, Wang Y, Zhu T, et al.Mesoporous Calcium-Silicate Nanoparticles Loaded with Prussian Blue Promotes Enterococcus Faecalis Ferroptosis-Like Death by Regulating Bacterial Redox Pathway ROSGSH[J].Int J Nanomedicine, 2022, 17(0.2147/ijn.s382928):5187-5205
|