[1] EINHORN T A, GERSTENFELD L C. Fracture healing: mechanisms and interventions [J]. Nat Rev Rheumatol, 2015, 11(1): 45-54.[2] ZHANG J, MURI J, FITZGERALD G, et al. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization [J]. Cell Metab, 2020, 31(6): 1136-53 e7.[3] RABINOWITZ J D, ENERBACK S. Lactate: the ugly duckling of energy metabolism [J]. Nat Metab, 2020, 2(7): 566-71.[4] MOOKERJEE S A, GERENCSER A A, NICHOLLS D G, et al. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements [J]. J Biol Chem, 2017, 292(17): 7189-207.[5] GALVAN-PENA S, O'NEILL L A. Metabolic reprograming in macrophage polarization [J]. Front Immunol, 2014, 5(420.[6] WEI T, MA D, LIU L, et al. Lactate promotes bone healing by regulating the osteogenesis of bone marrow mesenchymal stem cells through activating Olfr1440 [J]. Transl Res, 2024, 273(78-89.[7] LEE D C, SOHN H A, PARK Z Y, et al. A lactate-induced response to hypoxia [J]. Cell, 2015, 161(3): 595-609.[8] ZHOU Y, LIU X, HUANG C, et al. Lactate Activates AMPK Remodeling of the Cellular Metabolic Profile and Promotes the Proliferation and Differentiation of C2C12 Myoblasts [J]. Int J Mol Sci, 2022, 23(22): [9] HENDERSON N C, RIEDER F, WYNN T A. Fibrosis: from mechanisms to medicines [J]. Nature, 2020, 587(7835): 555-66.[10] NETEA M G, BALKWILL F, CHONCHOL M, et al. A guiding map for inflammation [J]. Nat Immunol, 2017, 18(8): 826-31.[11] FURMAN D, CAMPISI J, VERDIN E, et al. Chronic inflammation in the etiology of disease across the life span [J]. Nat Med, 2019, 25(12): 1822-32.[12] WILLENBORG S, SANIN D E, JAIS A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing [J]. Cell Metab, 2021, 33(12): 2398-414 e9.[13] SADIKU P, WILLSON J A, RYAN E M, et al. Neutrophils Fuel Effective Immune Responses through Gluconeogenesis and Glycogenesis [J]. Cell Metab, 2021, 33(2): 411-23 e4.[14] ROSALES C. Neutrophils at the crossroads of innate and adaptive immunity [J]. J Leukoc Biol, 2020, 108(1): 377-96.[15] AWASTHI D, NAGARKOTI S, SADAF S, et al. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis [J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(12): 165542.[16] KHATIB-MASSALHA E, BHATTACHARYA S, MASSALHA H, et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling [J]. Nat Commun, 2020, 11(1): 3547.[17] MEHLA K, SINGH P K. Metabolic Regulation of Macrophage Polarization in Cancer [J]. Trends Cancer, 2019, 5(12): 822-34.[18] MUNDER M, EICHMANN K, MORAN J M, et al. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells [J]. J Immunol, 1999, 163(7): 3771-7.[19] ZHANG D, TANG Z, HUANG H, et al. Metabolic regulation of gene expression by histone lactylation [J]. Nature, 2019, 574(7779): 575-80.[20] KUMAR A, PYARAM K, YAROSZ E L, et al. Enhanced oxidative phosphorylation in NKT cells is essential for their survival and function [J]. Proc Natl Acad Sci U S A, 2019, 116(15): 7439-48.[21] KAYMAK I, LUDA K M, DUIMSTRA L R, et al. Carbon source availability drives nutrient utilization in CD8(+) T cells [J]. Cell Metab, 2022, 34(9): 1298-311 e6.[22] NOE J T, RENDON B E, GELLER A E, et al. Lactate supports a metabolic-epigenetic link in macrophage polarization [J]. Sci Adv, 2021, 7(46): eabi8602.[23] WATSON M J, VIGNALI P D A, MULLETT S J, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid [J]. Nature, 2021, 591(7851): 645-51.[24] LOEFFLER J, DUDA G N, SASS F A, et al. The Metabolic Microenvironment Steers Bone Tissue Regeneration [J]. Trends Endocrinol Metab, 2018, 29(2): 99-110.[25] HALLER H L, SANDER F, POPP D, et al. Oxygen, pH, Lactate, and Metabolism-How Old Knowledge and New Insights Might Be Combined for New Wound Treatment [J]. Medicina (Kaunas), 2021, 57(11): [26] DE BOCK K, GEORGIADOU M, SCHOORS S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting [J]. Cell, 2013, 154(3): 651-63.[27] LEE H W, XU Y, ZHU X, et al. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance [J]. EMBO J, 2022, 41(9): e109890.[28] WU D, HUANG R T, HAMANAKA R B, et al. HIF-1alpha is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium [J]. Elife, 2017, 6: e25217.[29] XU Y, AN X, GUO X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis [J]. Arterioscler Thromb Vasc Biol, 2014, 34(6): 1231-9.[30] TRABOLD O, WAGNER S, WICKE C, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing [J]. Wound Repair Regen, 2003, 11(6): 504-9.[31] HUNT T K, ASLAM R, HUSSAIN Z, et al. Lactate, with oxygen, incites angiogenesis [J]. Adv Exp Med Biol, 2008, 614(73-80.[32] AMIRI N, GOLIN A P, JALILI R B, et al. Roles of cutaneous cell-cell communication in wound healing outcome: An emphasis on keratinocyte-fibroblast crosstalk [J]. Exp Dermatol, 2022, 31(4): 475-84.[33] LUO Z, TIAN M, YANG G, et al. Hypoxia signaling in human health and diseases: implications and prospects for therapeutics [J]. Signal Transduct Target Ther, 2022, 7(1): 218.[34] AUGUSTIN H G, KOH G Y. A systems view of the vascular endothelium in health and disease [J]. Cell, 2024, 187(18): 4833-58.[35] RING A, GOERTZ O, AL-BENNA S, et al. Accelerated angiogenic induction and vascular integration in a novel synthetic scaffolding matrix for tissue replacement [J]. Int J Artif Organs, 2010, 33(12): 877-84.[36] VEGRAN F, BOIDOT R, MICHIELS C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis [J]. Cancer Res, 2011, 71(7): 2550-60.[37] SAVITRI C, KWON J W, DROBYSHAVA V, et al. M2 Macrophage-Derived Concentrated Conditioned Media Significantly Improves Skin Wound Healing [J]. Tissue Eng Regen Med, 2022, 19(3): 617-28.[38] WU J, HU M, JIANG H, et al. Endothelial Cell-Derived Lactate Triggers Bone Mesenchymal Stem Cell Histone Lactylation to Attenuate Osteoporosis [J]. Adv Sci (Weinh), 2023, 10(31): e2301300.[39] SALHOTRA A, SHAH H N, LEVI B, et al. Mechanisms of bone development and repair [J]. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711.[40] JULIEN A, KANAGALINGAM A, MARTINEZ-SARRA E, et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair [J]. Nat Commun, 2021, 12(1): 2860.[41] SCHWORER S, PAVLOVA N N, CIMINO F V, et al. Fibroblast pyruvate carboxylase is required for collagen production in the tumour microenvironment [J]. Nat Metab, 2021, 3(11): 1484-99.[42] DA SILVA FELTRAN G, AUGUSTO DA SILVA R, DA COSTA FERNANDES C J, et al. Vascular smooth muscle cells exhibit elevated hypoxia-inducible Factor-1alpha expression in human blood vessel organoids, influencing osteogenic performance [J]. Exp Cell Res, 2024, 440(2): 114136.[43] WU Y, WANG M, FENG H, et al. Lactate induces osteoblast differentiation by stabilization of HIF1alpha [J]. Mol Cell Endocrinol, 2017, 452(84-92.[44] HUSTED A S, TRAUELSEN M, RUDENKO O, et al. GPCR-Mediated Signaling of Metabolites [J]. Cell Metab, 2017, 25(4): 777-96.[45] WU Y, WANG M, ZHANG K, et al. Lactate enhanced the effect of parathyroid hormone on osteoblast differentiation via GPR81-PKC-Akt signaling [J]. Biochem Biophys Res Commun, 2018, 503(2): 737-43.[46] YI O, LIN Y, HU M, et al. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds [J]. Phytomedicine, 2022, 100(154048.[47] ZHANG X, WU Y, PAN Z, et al. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design [J]. Acta Biomater, 2016, 42(329-40. |