[1] |
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol. 2019; 10: 208.
|
[2] |
Citi S, Fromm M, Furuse M. A short guide to the tight junction. J Cell Sci. 2024; 137(9): jcs261776.
|
[3] |
Vicente-Manzanares M, Ma X, Adelstein RS. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009; 10(11): 778-90.
|
[4] |
Jin Y, Blikslager AT. The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci. 2020; 21(10): 3550.
|
[5] |
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol. 2021; 12: 767456.
|
[6] |
Wang L, Chen Y, Wu H. Slit2-Robo4 signal pathway and tight junction in intestine mediate LPS-induced inflammation in mice. Eur J Med Res. 2024; 29(1): 349.
|
[7] |
Bernstein A, Reichert SNA. Expression of xylosyltransferases I and II and their role in the pathogenesis of arthrofibrosis. J Orthop Surg Res. 2020; 15(1): 27.
|
[8] |
Jin Baek K, Choi YS. The Proteolytic Activity of Porphyromonas gingivalis Is Critical in a Murine Model of Periodontitis. J Periodontol. 2017; 88(2): 218-224.
|
[9] |
Ni J, Lin M. Gas6 Attenuates Sepsis-Induced Tight Junction Injury and Vascular Endothelial Hyperpermeability via the Axl/NF-κB Signaling Pathway. Front Pharmacol. 2019; 10: 662.
|
[10] |
Wibbe N, Ebnet K. Cell Adhesion at the Tight Junctions: New Aspects and New Functions. Cells. 2023; 12(23): 2701.
|
[11] |
Otani T, Furuse M. Tight Junction Structure and Function Revisited. Trends Cell Biol. 2020; 30(10): 805-817.
|
[12] |
Shen L, Weber CR, Raleigh DR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. 2011; 73: 283-309.
|
[13] |
Guo W, Wang P, Liu ZH. Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci. 2018; 10(1): e8.
|
[14] |
Ivanov AI, McCall IC, Parkos CA. Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell. 2004; 15(6): 2639-51.
|
[15] |
Tang H, Chen Z, Gan S. GLUT1 contributes to impaired epithelial tight junction in the late phase of acute lung injury. Eur J Pharmacol. 2023; 961: 176185.
|
[16] |
Horowitz A, Chanez-Paredes SD, Haest X. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol. 2023; 20(7): 417-432.
|
[17] |
Liu Y, Tang J, Yuan J. Arsenite-induced downregulation of occludin in mouse lungs and BEAS-2B cells via the ROS/ERK/ELK1/MLCK and ROS/p38 MAPK signaling pathways. Toxicol Lett. 2020; 332: 146-154.
|
[18] |
Ding J, Li Z, Li L. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction and permeability via the mitogen-activated protein kinase pathway in a rabbit model of atherosclerosis. Biomed Pharmacother. 2020; 128: 110258.
|
[19] |
Zhou R, Chen J, Xu Y. PRPF19 facilitates colorectal cancer liver metastasis through activation of the Src-YAP1 pathway via K63-linked ubiquitination of MYL9. Cell Death Dis. 2023; 14(4): 258.
|
[20] |
Ding J, Li Z, Li L. Myosin light chain kinase inhibitor ML7 improves vascular endothelial dysfunction and permeability via the mitogen-activated protein kinase pathway in a rabbit model of atherosclerosis. Biomed Pharmacother. 2020; 128: 110258.
|
[21] |
Li J, Zhang L. Indole-3-propionic Acid Improved the Intestinal Barrier by Enhancing Epithelial Barrier and Mucus Barrier. J Agric Food Chem. 2021; 69(5): 1487-1495.
|
[22] |
García-Rodríguez A, Vila L, Cortés C,. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part Fibre Toxicol. 2018; 15(1): 33.
|
[23] |
Abe-Yutori M, Chikazawa T, Shibasaki K. Decreased expression of E-cadherin by Porphyromonas gingivalis-lipopolysaccharide attenuates epithelial barrier function. J Periodontal Res. 2017; 52(1): 42-50
|