[1] |
Wahl MC, Will CL, Lührmann R.The spliceosome: Design principles of a dynamic RNP machine[J].Cell, 2009, 136(4):701-718
|
[2] |
Cva?ková Z, Matěj? D, Staněk D.Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition[J].Hum Mutat, 2014, 35(3):308-317
|
[3] |
夏韦艺, 赵晨.视网膜色素变性疾病相关前体mRNA剪接因子研究进展[J].中华实验眼科杂志, 2017, 35(8):752-755
|
[4] |
Absmeier E, Santos KF, Wahl MC.Functions and regulation of the Brr2 RNA helicase during splicing[J].Cell Cycle, 2016, 15(24):3362-3377
|
[5] |
Zhao C, Bellur DL, Lu SS, et al.Autosomal-dominant retinitis pigmentosa caused by a mutation in SNRNP200,a gene required for unwinding of U4U6 snRNAs[J].Am J Hum Genet, 2009, 85(5):617-627
|
[6] |
Ehsani A, Alluin JV, Rossi JJ.Cell cycle abnormalities associated with differential perturbations of the human U5 snRNP associated U5-200kD RNA helicase[J].PLoS One, 2013, 8(4):e62125-
|
[7] |
Tremblay N, Baril M, Chatel-Chaix L, et al.Correction: spliceosome SNRNP200 promotes viral RNA sensing and IRF3 activation of antiviral response[J].PLoS Pathog, 2017, 13(1):e1006174-
|
[8] |
Pan X, Chen X, Liu X, et al.Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa[J].Mol Vis, 2014, 20:770-779
|
[9] |
Chen X, Liu Y, Sheng XL, et al.PRPF4 mutations cause autosomal dominant retinitis pigmentosa[J].Hum Mol Genet, 2014, 23(11):2926-2939
|
[10] |
Liu T, Jin X, Zhang X, et al.A novel missense SNRNP200 mutation associated with autosomal dominant retinitis pigmentosa in a Chinese family[J].PLoS One, 2012, 7(9):e45464-
|
[11] |
Liu Y, Chen X, Qin B, et al.Knocking DownSnrnp200Initiates demorphogenesis of rod photoreceptors in zebrafish[J].J Ophthalmol, 2015, 2015:816329-
|
[12] |
Gillissen MA, Kedde M, de Jong G, et al.AML-specific cytotoxic antibodies in patients with durable graft-versus-leukemia responses[J].Blood, 2018, 131(1):131-143
|