[1] |
Ng KS, Kuncewicz TM, Karp JM.Beyond hit-and-run: Stem cells leave a lasting memory[J].Cell Metab, 2015, 22(4):541-543
|
[2] |
Ankrum JA, Ong JF, Karp JM.Mesenchymal stem cells: Immune evasive, not immune privileged[J].Nat Biotechnol, 2014, 32(3):252-260
|
[3] |
Fu X, Liu G, Halim A, et al.Mesenchymal Stem Cell Migration and Tissue Repair[J].Cells, 2019, 8(8):784-
|
[4] |
Shao D, Lu M, Xu D, et al.Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells[J].Biomater Sci, 2017, 5(9):1820-1827
|
[5] |
Yang X, Wang Y, Shen X, et al.One-step synthesis of photoluminescent carbon dots with excitation-independent emission for selective bioimaging and gene delivery[J].J Colloid Interface Sci, 2017, 492:1-7
|
[6] |
Parvin N, Mandal TK.Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice[J].Microchim Acta, 2017, 184(4):1117-1125
|
[7] |
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, et al.Carbon dots: Applications in bioimaging and theranostics[J].Int J Pharm, 2019, 564:308-317
|
[8] |
Du J, Xu N, Fan J, et al.Carbon dots for in vivo bioimaging and theranostics[J].Small, 2019, 15(32):e1805087-
|
[9] |
Mondal S, Yucknovsky A, Akulov K, et al.Efficient Photosensitizing Capabilities and Ultrafast Carrier Dynamics of Doped Carbon Dots[J].J Am Chem Soc, 2019, 141(38):15413-15422
|
[10] |
Su R, Wang D, Liu M, et al.Subgram-Scale Synthesis of Biomass Waste-Derived Fluorescent Carbon Dots in Subcritical Water for Bioimaging, Sensing, and Solid-State Patterning[J].ACS Omega, 2018, 3(10):13211-13218
|
[11] |
Zhang M, Zhao X, Fang Z, et al.Fabrication of HA/PEI-functionalized carbon dots for tumor targeting, intracellular imaging and gene delivery[J].RSC Adv, 2017, 7(6):3369-3375
|
[12] |
Wang D, Wang Z, Zhan Q, et al.Facile and scalable preparation of fluorescent carbon dots for multifunctional applications[J].Engineering, 2017, 3(3):402-408
|
[13] |
Callera F, de Melo CMTP.Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site[J].Stem Cells Dev, 2007, 16(3):461-466
|
[14] |
Bartunek J, Vanderheyden M, Vandekerckhove B, et al.Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: Feasibility and safety[J].Circulation, 2005, 112(9 Suppl):I178-I183
|
[15] |
Strauer BE, Brehm M, Zeus T, et al.Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: The IACT study[J].J Am Coll Cardiol, 2005, 46(9):1651-1658
|
[16] |
Teston E, Maldiney T, Marangon I, et al.Nanohybrids with magnetic and persistent luminescence properties for cell labeling,tracking,in vivo real-time imaging,and magnetic vectorization[J].Small, 2018, 14(16):e1800020-
|
[17] |
Li J, Lee WY, Wu TY, et al.Multifunctional quantum dot nanoparticles for effective differentiation and long-term tracking of human mesenchymal stem cells in vitro and in vivo[J].Adv Healthcare Mater, 2016, 5(9):1049-1057
|
[18] |
Serganova I, Blasberg RG.Molecular imaging with reporter genes: Has its promise been delivered?[J].J Nucl Med, 2019, 60(12):1665-1681
|
[19] |
Govindan S, Oberst P, Jabaudon D.In vivo pulse labeling of isochronic cohorts of cells in the central nervous system using FlashTag[J].Nat Protoc, 2018, 13(10):2297-2311
|
[20] |
Ji F, Duan HG, Zheng CQ, et al.Comparison of chloromethyl-dialkylcarbocyanine and green fluorescent protein for labeling human umbilical mesenchymal stem cells[J].Biotechnol Lett, 2015, 37(2):437-447
|
[21] |
Kang YF, Fang YW, Li YH, et al.Nucleus-staining with biomolecule-mimicking nitrogen-doped carbon dots prepared by a fast neutralization heat strategy[J].Chem Commun, 2015, 51(95):16956-16959
|
[22] |
Rong M, Feng YF, Wang Y, et al.One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging[J].Sensor Actuat B: Chem, 2017, 245:868-874
|
[23] |
Li HT, Liu R, Kong W, et al.Carbon quantum dots with photo-generated proton property as efficient visible light controlled acid catalyst[J].Nanoscale, 2014, 6(2):867-873
|
[24] |
Pan L, Sun S, Zhang A, et al.Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J].Adv Mater, 2015, 27(47):7782-7787
|
[25] |
Cao L, Wang X, Meziani MJ, et al.Carbon dots for multiphoton bioimaging[J].J Am Chem Soc, 2007, 129(37):11318-11319
|
[26] |
Han Y, Zhang F, Zhang J, et al.Bioactive carbon dots direct the osteogenic differentiation of human bone marrow mesenchymal stem cells[J].Colloids Surf B Biointerfaces, 2019, 179:1-8
|
[27] |
Ding H, Wei JS, Zhong N, et al.Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging[J].Langmuir, 2017, 33(44):12635-12642
|
[28] |
Tao H, Yang K, Ma Z, et al.In vivo NIR fluorescence imaging,biodistribution,and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J].Small, 2012, 8(2):281-290
|
[29] |
Li D, Jing P, Sun L, et al.Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots[J].Adv Mater, 2018, 30(13):e1705913-
|
[30] |
Ding H, Wei JS, Zhang P, et al.Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths[J].Small, 2018, 14(22):e1800612-
|
[31] |
Ko HY, Chang YW, Paramasivam G, et al.In vivo imaging of tumour bearing near-infrared fluorescence-emitting carbon nanodots derived from tire soot[J].Chem Commun, 2013, 49(87):10290-
|