口腔生物医学 ›› 2021, Vol. 12 ›› Issue (4): 273-276.
李安朔,杨光正,文晋,蒋欣泉
收稿日期:
2021-04-12
修回日期:
2021-11-14
出版日期:
2021-12-25
发布日期:
2022-01-04
通讯作者:
蒋欣泉
E-mail:xinquanjiang@aliyun.com
基金资助:
Received:
2021-04-12
Revised:
2021-11-14
Online:
2021-12-25
Published:
2022-01-04
Contact:
Xin-Quan JIANG
E-mail:xinquanjiang@aliyun.com
摘要: 传统药物载体在体内投递过程中面临诸多问题,常出现全身用药靶向性弱、载体的稳定性差和生物相容性低等情况。细胞膜作为细胞信息传递与行为调控的重要组成部分,可作为药物的包覆材料引起关注。间充质干细胞膜载体作为新兴的载体,具有主动靶向性、免疫调节性、膜表面修饰性等特点,在肿瘤治疗和组织再生等领域具备广泛的应用潜力。本文梳理了间充质干细胞膜载体的特性以及应用现状,为未来的膜载体设计和临床应用提供指导。
中图分类号:
李安朔 杨光正 文晋 蒋欣泉. 基于间充质干细胞膜的药物投递系统研究进展[J]. 口腔生物医学, 2021, 12(4): 273-276.
[1] | Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery[J]. Front Pharmacol. 2015;6. |
[2] | Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine[J]. J R Soc Interface. 2014;11(101):20140459. |
[3] | Wu HH, Zhou Y, Tabata Y, Gao JQ. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic[J]. J Control Release. 2019;294(November 2018):102-113. |
[4] | Patel RP, Patel MJ, Patel N a. An overview of resealed erythrocyte drug delivery[J]. J Pharm Res. 2009;2(6):1008-1012. |
[5] | Zhang TY, Huang B, Wu H Bin, et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release. 2015;209:260-271. |
[6] | Hu C-MJ, Fang RH, Wang K-C, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118-121. |
[7] | Bose RJC, Lee S-H, Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments[J]. Drug Discov Today. 2016;21(8):1303-1312. |
[8] | Dehaini D, Wei X, Fang RH, et al. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization[J]. Adv Mater. 2017;29(16):1606209. |
[9] | Bose RJ, Paulmurugan R, Moon J, Lee S-H, Park H. Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics. Drug Discov Today[J]. 2018;23(4):891-899. |
[10] | Hu YL, Fu YH, Tabata Y, Gao JQ. Mesenchymal stem cells: A promising targeted-delivery vehicle in cancer gene therapy. J Control Release[J]. 2010;147(2):154-162. |
[11] | M Gogoi, N Kumar SP. Multifunctional magnetic liposomes for cancer imaging and therapeutic applications[J]. Nanoarchitectonics Smart Deliv Drug Target. 2016;732-782. |
[12] | Bose RJ, Paulmurugan R, Moon J, Lee SH, Park H. Cell membrane-coated nanocarriers: the emerging targeted delivery system for cancer theranostics[J]. Drug Discov Today. 2018;23(4):891-899. |
[13] | Malhotra H, Sheokand N, Kumar S, et al. Exosomes: Tunable Nano Vehicles for Macromolecular Delivery of Transferrin and Lactoferrin to Specific Intracellular Compartment. J Biomed Nanotechnol[J]. 2016;12(5):1101-1114. |
[14] | Copp JA, Fang RH, Luk BT, et al. Clearance of pathological antibodies using biomimetic nanoparticles[J]. Proc Natl Acad Sci. 2014;111(37):13481-13486. |
[15] | Thamphiwatana S, Gao W, Obonyo M, Zhang L. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proc Natl Acad Sci[J]. 2014;111(49):17600-17605. |
[16] | Tang J, Shen D, Caranasos TG, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome[J]. Nat Commun. 2017;8(May 2016):1-9. |
[17] | Luo L, Tang J, Nishi K, et al. Fabrication of Synthetic Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice[J]. Circ Res. 2017;120(11):1768-1775. |
[18] | Sun J, Nemoto E, Hong G, Sasaki K. Modulation of stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 in Porphyromonas gingivalis-induced periodontal inflammation[J]. BMC Oral Health. 2016;17(1):1-8. |
[19] | Fang RH, Hu CMJ, Chen KNH, et al. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale[J]. 2013;5(19):8884-8888. |
[20] | Wang Q, Cheng H, Peng H, Zhou H, Li PY, Langer R. Non-genetic engineering of cells for drug delivery and cell-based therapy[J]. Adv Drug Deliv Rev. 2015;91:125-140. |
[21] | Liu L, He H, Liu J. Advances on Non-Genetic Cell Membrane Engineering for Biomedical Applications[J]. Polymers (Basel). 2019;11(12):2017. |
[22] | Cheng R, Liu G, Ma S, et al. Biodegradable chimaeric polymersomes mediate highly efficient delivery of exogenous proteins into cells[J]. J Control Release. 2011;152:e136-e137. |
[23] | Wu H, Jiang X, Li Y, et al. Engineering Stem Cell Derived Biomimetic Vesicles for Versatility and Effective Targeted Delivery[J]. Adv Funct Mater. 2020;2006169:1-15. |
[24] | Cheng H, Kastrup CJ, Ramanathan R, et al. Nanoparticulate Cellular Patches for Cell-Mediated Tumoritropic Delivery[J]. ACS Nano. 2010;4(2):625-631. |
[25] | Hu C-MJ, Fang RH, Zhang L. Erythrocyte-Inspired Delivery Systems[J]. Adv Healthc Mater. 2012;1(5):537-547. |
[26] | Zhang X, Yao S, Liu C, Jiang Y. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials. 2015;39:269-281. |
[27] | Li L, Guan Y, Liu H, et al. Silica Nanorattle–Doxorubicin-Anchored Mesenchymal Stem Cells for Tumor-Tropic Therapy[J]. ACS Nano. 2011;5(9):7462-7470. doi:10.1021/nn202399w |
[28] | Suryaprakash S, Li M, Lao Y-H, Wang H-X, Leong KW. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon N Y. 2018;129:863-868. |
[29] | Wang X, Chen H, Zeng X, et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B. 2019;9(1):167-176. |
[30] | Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L. Erythrocyte Membrane Is an Alternative Coating to Polyethylene Glycol for Prolonging the Circulation Lifetime of Gold Nanocages for Photothermal Therapy[J]. ACS Nano. 2014;8(10):10414-10425. |
[31] | He W, Frueh J, Wu Z, He Q. How Leucocyte Cell Membrane Modified Janus Microcapsules are Phagocytosed by Cancer Cells[J]. ACS Appl Mater Interfaces. 2016;8(7):4407-4415. |
[32] | Rao L, Cai B, Bu L-L, et al. Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy[J]. ACS Nano. 2017;11(4):3496-3505. |
[33] | Xuan M, Shao J, Dai L, Li J, He Q. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy[J]. ACS Appl Mater Interfaces. 2016;8(15):9610-9618. |
[34] | Gao W, Hu C-MJ, Fang RH, Luk BT, Su J, Zhang L. Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes[J]. Adv Mater. 2013;25(26):3549-3553. |
[35] | Gao C, Lin Z, Wu Z, Lin X, He Q. Stem-Cell-Membrane Camouflaging on Near-Infrared Photoactivated Upconversion Nanoarchitectures for in Vivo Remote-Controlled Photodynamic Therapy[J]. ACS Appl Mater Interfaces. 2016;8(50):34252-34260. |
[36] | Zhang Y, Cai K, Li C, et al. Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy[J]. Nano Lett. 2018;18(3):1908-1915. |
[37] | Gao C, Lin Z, Jurado-Sánchez B, Lin X, Wu Z, He Q. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small. 2016;12(30):4056-4062. |
[38] | Sun H, Su J, Meng Q, et al. Cancer-Cell-Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors[J]. Adv Mater. 2016;28(43):9581-9588. |
[39] | Yao J, Feng J, Gao X, et al. Neovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer[J]. Biomaterials. 2017;113:1-17. |
[40] | Fang RH, Kroll A V., Gao W, Zhang L. Cell Membrane Coating Nanotechnology[J]. Adv Mater. 2018;30(23):1-34. |
[41] | Agrahari V, Agrahari V, Burnouf P-A, Chew CH, Burnouf T. Extracellular Microvesicles as New Industrial Therapeutic Frontiers[J]. Trends Biotechnol. 2019;37(7):707-729. |
[42] | Guido C, Maiorano G, Cortese B, D’amone S, Palamà IE. Biomimetic nanocarriers for cancer target therapy[J]. Bioengineering. 2020;7(3):1-16. |
[43] | Tian W, Lu J, Jiao D. Stem cell membrane vesicle–coated nanoparticles for efficient tumor-targeted therapy of orthotopic breast cancer[J]. Polym Adv Technol. 2019;30(4):1051-1060. |
[44] | Yao C, Wu W, Tang H, et al. Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated repair of myocardial infarction injury[J]. Biomaterials. 2020;257:120256. |
[45] | Bianco P, Cao X, Frenette PS, et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine[J]. Nat Med. 2013;19(1):35-42. |
[46] | Li W, Ren G, Huang Y, et al. Mesenchymal stem cells: a double-edged sword in regulating immune responses[J]. Cell Death Differ. 2012;19(9):1505-1513. |
[47] | Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S. Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth[J]. Clin Oral Investig. 2014;18(9):2103-2112. |
[48] | BOSE R J C, JU K B, LEE S H et al. Surface modification of polymeric nanoparticles with human adipose derived stem cell membranes AdMSCs. Proceedings of the World Biomaterials Congress. Vol F. ; 2016. |
[49] | Seo Y, Kim H-S, Hong I-S. Stem Cell-Derived Extracellular Vesicles as Immunomodulatory Therapeutics[J]. Stem Cells Int. 2019;2019:1-10. |
[50] | Gon?alves F da C, Luk F, Korevaar SS, et al. Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes[J]. Sci Rep. 2017;7(1):12100. |
[51] | Karp JM, Leng Teo GS. Mesenchymal Stem Cell Homing: The Devil Is in the Details[J]. Cell Stem Cell. 2009;4(3):206-216. |
[52] | Ringe J, Strassburg S, Neumann K, et al. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2[J]. J Cell Biochem. 2007;101(1):135-146. |
[53] | Cui Y, Madeddu P. The Role of Chemokines, Cytokines and Adhesion Molecules in Stem Cell Trafficking and Homing[J]. Curr Pharm Des. 2011;17(30):3271-3279. |
[54] | Wang Y, Deng Y, Zhou G-Q. SDF-1α/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model[J]. Brain Res. 2008;1195:104-112. |
[55] | Blazar BR, MacDonald KPA, Hill GR. Immune regulatory cell infusion for graft-versus-host disease prevention and therapy[J]. Blood. 2018;131(24):2651-2660. |
[56] | Bose RJ, Kim BJ, Arai Y, et al. Bioengineered stem cell membrane functionalized nanocarriers for therapeutic targeting of severe hindlimb ischemia[J]. Biomaterials. 2018;185(August):360-370. |
[57] | Tang J, Su T, Huang K, et al. Targeted repair of heart injury by stem cells fused with platelet nanovesicles. Nat Biomed Eng[J]. 2018;2(1):17-26. |
[1] | 史凡 黄鉴栎 刘梅 王丹 章非敏. 碳点示踪并促进大鼠骨髓间充质干细胞成骨分化的初步研究[J]. 口腔生物医学, 2021, 12(1): 5-11. |
[2] | 王淋 田卫东. 外泌体在颞下颌关节软骨再生中的应用前景[J]. 口腔生物医学, 2021, 12(1): 53-57. |
[3] | 闫宛昊 张凤秋. 大麻素受体在牙周炎防治中的潜在作用[J]. , 2019, 10(3): 154-157. |
[4] | 陆史俊 尤欣然 高洋 张锋 潘灏. 碳酸锶/丝素蛋白纳米纤维膜的构建及其对骨髓间充质干细胞增殖分化的影响[J]. , 2017, 8(1): 20-24. |
[5] | 廖馨 吴悠 朱丹丹 王妍婷 张婷婷 范媛. 慢病毒载体介导Golli-MBP基因过表达的体内实验初探[J]. , 2016, 7(2): 62-66. |
[6] | 张宁 林军. 组织工程细胞膜片的获取方式[J]. , 2014, 5(3): 147-161. |
[7] | 欧伟 刘玉 孙卫斌 杨建良 Xuebin Yang David Wood. 采用酵母表达载体pWX530构建表达人重组牙骨质蛋白1[J]. , 2013, 4(1): 8-10. |
[8] | 马玉实 范志朋. 构建逆转录病毒pQCXIH-HA-FBXL11表达质粒及稳定转染细胞[J]. , 2012, 3(3): 113-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||