[1] |
Lunar Silva I, Cascales E. Molecular Strategies Underlying Porphyromonas gingivalis Virulence[J]. J Mol Biol, 2021; 433(7): 166836.
|
[2] |
Xu W, Zhou W, Wang H, et al. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis[J]. Adv Protein Chem Struct Biol, 2020; 120: 45-84.
|
[3] |
Zhou W, Su L, Duan X, et al. MicroRNA-21 down-regulates inflammation and inhibits periodontitis[J]. Mol Immunol, 2018; 101: 608-614.
|
[4] |
Rosales C. Neutrophils at the crossroads of innate and adaptive immunity[J]. J Leukoc Biol, 2020; 108(1): 377-396.
|
[5] |
Delgado-Rizo V, Martinez-Guzman MA, Iniguez-Gutierrez L, et al. Neutrophil extracellular traps and its implications in inflammation: an overview[J]. Front Immunol, 2017; 8: 81
|
[6] |
Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps[J]. Cell Death Differ, 2009; 16(11): 1438–1444.
|
[7] |
Chen JL, Tong Y, Zhu Q, Gao LQ, Sun Y. Neutrophil extracellular traps induced by Porphyromonas gingivalis lipopolysaccharide modulate inflammatory responses via a Ca2+-dependent pathway[J]. Arch Oral Biol. 2022; 141: 105467.
|
[8] |
Papayannopoulos V. Neutrophil extracellular traps in immunity and disease[J]. Nat Rev Immunol, 2018; 18(2): 134-147
|
[9] |
Vitkov L, Klappacher M, Hannig M, et al. Neutrophil fate in gingival crevicular fluid[J]. Ultrastruct Pathol, 2010; 34(1): 25-30
|
[10] |
White P, Sakellari D, Roberts H, et al. Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis[J]. J Clin Periodontol, 2016; 43(12): 1041-1049
|
[11] |
Hirschfeld J, Dommisch H, Skora P, et al. Neutrophil extracellular trap formation in supragingival biofilms[J]. Int J Med Microbiol, 2015; 305(4-5): 453-463.
|
[12] |
Magán-Fernández A, O'Valle F, Abadía-Molina F, et al. Characterization and comparison of neutrophil extracellular traps in gingival samples of periodontitis and gingivitis: A pilot study[J]. J Periodontal Res, 2019; 54(3): 218-224.
|
[13] |
Erpenbeck L, Sch?n MP. Neutrophil extracellular traps: protagonists of cancer progression? [J]. Oncogene, 2017; 36(18): 2483-2490.
|
[14] |
Pilsczek FH, Salina D, Poon KK, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010; 185 (12): 7413-7425.
|
[15] |
Byrd AS, O'Brien XM, Johnson CM, et al. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans[J]. J Immunol, 2013; 190(8): 4136-4148.
|
[16] |
Pintard C, Ben Khemis M, Liu D, et al. Apocynin prevents GM-CSF-induced-ERK1/2 activation and -neutrophil survival independently of its inhibitory effect on the phagocyte NADPH oxidase NOX2[J]. Biochem Pharmacol, 2020; 177: 113950.
|
[17] |
Dikilitas A, Karaaslan F, Aydin E?, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) in subjects with different stages of periodontitis according to the new classification[J]. J Appl Oral Sci, 2022; 30: e20210423.
|
[18] |
Lam RS, O'Brien-Simpson NM, Hamilton JA, et al. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model[J]. Immunol Cell Biol, 2015, 93(8): 705-15.
|
[19] |
Jayaprakash K, Demirel I, Khalaf H, et al. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis[J]. Molecular oral Microbiology, 2015; 30(5), 361–375.
|
[20] |
Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: Structural and pharmacological perspectives[J]. Eur J Med Chem, 2016, 109: 314-341.
|
[21] |
Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation[J]. Nat Chem Biol, 2011; 7(2): 75-7.
|