[1] |
Szostakowski B, DeMaio M. Ideal xenograft or a perfect bone substitute?-A retrospective review and analysis of the historical concept of ivory implants in orthopaedics. Int Orthop. 2020 May; 44(5):1003-1009.
|
[2] |
Kashirina A, Yao Y, Liu Y, et al. Biopolymers as bone substitutes: a review[J]. Biomaterials Science, 2019, 7.
|
[3] |
Amghar-Maach S, Gay-Escoda C, Sánchez-Garcés Má. Regeneration of periodontal bone defects with dental pulp stem cells grafting: Systematic Review. J Clin Exp Dent. 2019 Apr 1; 11(4): e373-e381.
|
[4] |
Lee YC, Chan YH, Hsieh SC, et al. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Int J Mol Sci. 2019 Oct 10; 20(20):5015.
|
[5] |
Lai S, Deng L, Liu C,et al. Bone marrow mesenchymal stem cell-derived exosomes loaded with miR-26a through the novel immunomodulatory peptide DP7-C can promote osteogenesis. Biotechnol Lett. 2023 Jul;45(7):905-919.
|
[6] |
Saidak Z, Marie PJ. Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther. 2012 Nov; 136(2):216-26.
|
[7] |
Marie PJ. Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Curr Opin Rheumatol. 2006 Jun; 18 Suppl 1: S11-5.
|
[8] |
Guo S, Yu D, Xiao X, et al. A vessel subtype beneficial for osteogenesis enhanced by strontium-doped sodium titanate nanorods by modulating macrophage polarization. J Mater Chem B. 2020 Jul 28; 8(28):6048-6058.
|
[9] |
Chen Y, Zheng Z, Zhou R, et al. Developing a Strontium-Releasing Graphene Oxide-/Collagen-Based Organic-Inorganic Nanobiocomposite for Large Bone Defect Regeneration via MAPK Signaling Pathway. ACS Appl Mater Interfaces. 2019 May 1;11(17):15986-15997.
|
[10] |
Li JJ, Dunstan CR, Entezari A, et al. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects. Adv Healthc Mater. 2019 Jul; 8(13): e1900641.
|
[11] |
Guo SC, Tao SC, Yin WJ, et al. Exosomes from Human Synovial-Derived Mesenchymal Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head in the Rat. Int J Biol Sci. 2016 Oct 17; 12(10):1262-1272.
|
[12] |
Liang B, Liang JM, Ding JN, et al. Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 2019 Nov 20; 10(1):335.
|
[13] |
Kuang MJ, Huang Y, Zhao XG, et al. Exosomes derived from Wharton's jelly of human umbilical cord mesenchymal stem cells reduce osteocyte apoptosis in glucocorticoid-induced osteonecrosis of the femoral head in rats via the miR-21-PTEN-AKT signalling pathway. Int J Biol Sci. 2019 Jul 20; 15(9):1861-1871. (2019) 1861–1871.
|
[14] |
Narayanan R, Huang CC, Ravindran S. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int. 2016; 2016:3808674.
|
[15] |
Lai RC, Tan SS, Teh BJ, et al. Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteasome. Int J Proteomics. 2012; 2012:971907.
|
[16] |
Kang Y, Xu C, Meng L, et al. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater. 2022 Feb 18;18:26-41.
|
[17] |
Qi L, Fang X, Yan J,et al. Magnesium-containing bioceramics stimulate exosomal miR-196a-5p secretion to promote senescent osteogenesis through targeting Hoxa7/MAPK signaling axis. Bioact Mater. 2023 Nov 4;33:14-29.
|
[18] |
Wei P, Jing W, Yuan Z, et al. Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration. ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30596-30609.
|
[19] |
Weng L, Boda SK, Teusink MJ, et al. Binary Doping of Strontium and Copper Enhancing Osteogenesis and Angiogenesis of Bioactive Glass Nanofibers while Suppressing Osteoclast Activity. ACS Appl Mater Interfaces. 2017 Jul 26;9(29):24484-24496.
|
[20] |
Lin K, Xia L, Li H, et al. Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials. 2013 Dec;34(38):10028-42.
|