[1] |
WANG Bowen, TAN Zengqi, FENG Guan. Tumor-Derived Exosomes Mediate the Instability of Cadherins and Promote Tumor Progression[J]. International Journal of Molecular Sciences, 2019, 20(15): 3652-3665.
|
[2] |
Johnstone R M, Adam M, Hammond J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19): 9412-9420.
|
[3] |
Zhang S, Teo K Y W, Chuah S J, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials, 2019, 200: 35-47.
|
[4] |
Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling[J]. Cell Commun Signal, 2021, 19(1): 47-65.
|
[5] |
Ocansey D K W, ZHANG Li, WANG Yifei, et al. Exosome-mediated effects and applications in inflammatory bowel disease[J]. Biol Rev Camb Philos Soc, 2020, 95(5): 1287-1307.
|
[6] |
XU Jie, LI Deng, CAI Zhiqing, et al. Exosomal lncRNAs NONMMUT000375.2 and NONMMUT071578.2 derived from titanium particle treated RAW264.7 cells regulate osteogenic differentiation of MC3T3-E1 cells[J]. J Biomed Mater Res A, 2020, 108(11): 2251-2262.
|
[7] |
Ikebuchi Y, Aoki S, Honma M, et al. Coupling of bone resorption and formation by RANKL reverse signalling[J]. Nature, 2018, 561(7722): 195-200.
|
[8] |
Colletti M, Tomao L, Galardi A, et al. Neuroblastoma-secreted exosomes carrying miR-375 promote osteogenic differentiation of bone-marrow mesenchymal stromal cells[J]. J Extracell Vesicles, 2020, 9(1): 1774144-1774161.
|
[9] |
QIN Yunhao, ZHANG Changqing. Endothelial progenitor cellderived extracellular vesiclemeditated celltocell communication regulates the proliferation and osteoblastic differentiation of bone mesenchymal stromal cells[J]. Mol Med Rep, 2017, 16(5): 7018-7024.
|
[10] |
Wong F C, YE Linhan, Demir I E, et al. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease[J]. Glia, 2022, 70(1): 20-34.
|
[11] |
Amin N, Boccardi V, Taghizadeh M, et al. Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway[J]. Aging Clin Exp Res, 2020, 32(3): 363-371.
|
[12] |
Silva D I, Santos B P D, Leng J, et al. Dorsal root ganglion neurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform[J]. Cell Death Dis, 2017, 8(12): 3209-3222.
|
[13] |
WU Zhigang, PU Panjun, SU Zhi, et al. Schwann Cell-derived exosomes promote bone regeneration and repair by enhancing the biological activity of porous Ti6Al4V scaffolds[J]. Biochem Biophys Res Commun, 2020, 531(4): 559-565.
|
[14] |
WU Mengrui, CHEN Guiqian, LI Yipeng. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease[J]. Bone Res, 2016, 4: 16009-16029.
|
[15] |
DUN Xinpeng, Parkinson D B. Role of Netrin-1 Signaling in Nerve Regeneration[J]. Int J Mol Sci, 2017, 18(3): 491-512.
|
[16] |
LV Jianwei, SUN Xiaolei, MA Jianxiong, et al. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor[J]. Biochem Biophys Res Commun, 2015, 464(1): 263-268.
|
[17] |
Maruyama K, Kawasaki T, Hamaguchi M, et al. Bone-protective Functions of Netrin 1 Protein[J]. J Biol Chem, 2016, 291(46): 23854-23868.
|
[18] |
Gad J M, Keeling S L, Wilks A F, et al. The expression patterns of guidance receptors, DCC and Neogenin, are spatially and temporally distinct throughout mouse embryogenesis[J]. Dev Biol, 1997, 192(2): 258-273.
|
[19] |
ZHOU Zheng, XIE Jianxin, Lee D, et al. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation[J]. Dev Cell, 2010, 19(1): 90-102.
|
[20] |
Mediero A, Ramkhelawon B, Perez-Aso M, et al. Netrin-1 is a critical autocrine/paracrine factor for osteoclast differentiation[J]. J Bone Miner Res, 2015, 30(5): 837-854.
|
[21] |
Hansen C G, Ng Y L, Lam W L, et al. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1[J]. Cell Res, 2015, 25(12): 1299-1313.
|
[22] |
Zaidi S K, Sullivan A J, Medina R, et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription[J]. EMBO J, 2004, 23(4): 790-799.
|
[23] |
YANG Wanlei, HAN Weiqi, QIN An, et al. The emerging role of Hippo signaling pathway in regulating osteoclast formation[J]. J Cell Physiol, 2018, 233(6): 4606-4617.
|
[24] |
Narayanan A, Srinaath N, Rohini M, et al. Regulation of Runx2 by MicroRNAs in osteoblast differentiation[J]. Life Sci, 2019, 232: 116676-116684.
|
[25] |
ZHU Dashuai, LI Zhenhua, HUANG Ke, et al. Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair[J]. Nat Commun, 2021, 12(1): 1412-1421.
|