口腔生物医学 ›› 2023, Vol. 14 ›› Issue (1): 59-62.
魏巍1,赵彬2*
收稿日期:
2022-05-25
修回日期:
2022-08-16
出版日期:
2023-03-25
发布日期:
2023-03-29
通讯作者:
赵彬
E-mail:sxmu0688@126.com
基金资助:
Wei-Wei 1,Bin Zhao2
Received:
2022-05-25
Revised:
2022-08-16
Online:
2023-03-25
Published:
2023-03-29
Contact:
Bin Zhao
E-mail:sxmu0688@126.com
摘要: 碳二亚胺作为化学交联剂,通过增强胶原性能及抑制基质金属蛋白酶活性,可明显增强牙本质粘结强度及持久性。碳二亚胺常与N-羟基丁二酰亚胺联合应用以达到更好的牙本质粘结效果。本文就碳二亚胺增强牙本质粘接效果的作用机制及联合应用作一综述。
魏巍 赵彬. 碳二亚胺增强牙本质粘接的机制研究进展[J]. 口腔生物医学, 2023, 14(1): 59-62.
Wei-Wei Bin Zhao. Research progress and mechanism of EDC enhancing dentine bonding[J]. Oral Biomedicine, 2023, 14(1): 59-62.
[1] | Zhang B, Yang D, Zhu X, et al. Effects of different concentrations of sodium hypochlorite on dentine adhesion and the recovery application of sodium erythorbate[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2022,47(2):226-237. |
[2] | Breschi L, Maravic T, Cunha S R, et al. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications[J]. Dental materials, 2018,34(1):78-96. |
[3] | Maravic T, Mancuso E, Comba A, et al. Dentin Cross-linking Effect of Carbodiimide After 5 Years[J]. Journal of Dental Research, 2021,100(10):1090-1098. |
[4] | Alizadeh M, Abbasi F, Khoshfetrat A B, et al. Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method[J]. Materials Science and Engineering: C, 2013,33(7):3958-3967. |
[5] | Kaczmarek B, Sionkowska A, Kozlowska J, et al. New composite materials prepared by calcium phosphate precipitation in chitosan/collagen/hyaluronic acid sponge cross-linked by EDC/NHS[J]. Int J Biol Macromol, 2018,107(Pt A):247-253. |
[6] | Maciel Pires P, Dávila-Sánchez A, Faus-Matoses V, et al. Bonding performance and ultramorphology of the resin-dentine interface of contemporary universal adhesives[J]. Clinical Oral Investigations, 2022. |
[7] | Chen L, Chen W, Yu Y, et al. Effect of chlorhexidine-loaded poly(amido amine) dendrimer on matrix metalloproteinase activities and remineralization in etched human dentin in vitro[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021,121:104625. |
[8] | Mazzoni A, Tjaderhane L, Checchi V, et al. Role of dentin MMPs in caries progression and bond stability[J]. J Dent Res, 2015,94(2):241-251. |
[9] | Han F, Jin X, Yuan X, et al. Interactions of two phosphate ester monomers with hydroxyapatite and collagen fibers and their contributions to dentine bond performance[J]. Journal of Dentistry, 2022,122:104159. |
[10] | Owens B M, Johnson W W, Harris E F. Marginal Permeability of Self-etch and Total-etch Adhesive Systems[J]. Operative Dentistry, 2006,31(1):60-67. |
[11] | 张凌方明陈吉华. 自酸蚀粘结系统的研究进展[J]. 国外医学.口腔医学分册, 2004(05):394-396. |
[12] | Stape T H S, Mutluay M M, Tj?derhane L, et al. The pursuit of resin-dentin bond durability: Simultaneous enhancement of collagen structure and polymer network formation in hybrid layers[J]. Dental Materials, 2021,37(7):1083-1095. |
[13] | Huang G P, Shanmugasundaram S, Masih P, et al. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds[J]. J Biomed Mater Res A, 2015,103(2):762-771. |
[14] | YANG C. Enhanced physicochemical properties of collagen by using EDC/NHS-crosslinking[J]. Bulletin of materials science, 2012,35(5):913-918. |
[15] | 刘明明, 李爱玲, 修瑞娟. 基质金属蛋白酶的研究进展[J]. 中国病理生理杂志, 2018,34(10):1914-1920. |
[16] | Scannevin R H, Alexander R, Haarlander T M, et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation[J]. J Biol Chem, 2017,292(43):17963-17974. |
[17] | Liu Y, Tjaderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation[J]. J Dent Res, 2011,90(8):953-968. |
[18] | Basbaum C B, Werb Z. Focalized proteolysis: spatial and temporal regulation of extracellular matrix degradation at the cell surface[J]. Curr Opin Cell Biol, 1996,8(5):731-738. |
[19] | Tezvergil-Mutluay A, Mutluay M M, Agee K A, et al. Carbodiimide cross-linking inactivates soluble and matrix-bound MMPs, in vitro[J]. J Dent Res, 2012,91(2):192-196. |
[20] | Tjaderhane L, Nascimento F D, Breschi L, et al. Strategies to prevent hydrolytic degradation of the hybrid layer-A review[J]. Dent Mater, 2013,29(10):999-1011. |
[21] | Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review[J]. Int J Biol Macromol, 2020,161:550-560. |
[22] | Scheffel D L, Hebling J, Scheffel R H, et al. Inactivation of matrix-bound matrix metalloproteinases by cross-linking agents in acid-etched dentin[J]. Oper Dent, 2014,39(2):152-158. |
[23] | Asthana G, Khambhala R, Govil S, et al. Effect of chemical cross-linkers on surface topography and microtensile bond strength of sound dentin: An in vitro study[J]. J Conserv Dent, 2021,24(3):288-292. |
[24] | Bedran-Russo A K B, Vidal C M P, Dos Santos P H, et al. Long-term effect of carbodiimide on dentin matrix and resin-dentin bonds[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010,94B(1):250-255. |
[25] | Maciel P P, Davila-Sanchez A, Faus-Matoses V, et al. Bonding performance and ultramorphology of the resin-dentine interface of contemporary universal adhesives[J]. Clin Oral Investig, 2022. |
[26] | Shepherd J H, Ghose S, Kew S J, et al. Effect of fiber crosslinking on collagen-fiber reinforced collagen-chondroitin-6-sulfate materials for regenerating load-bearing soft tissues[J]. J Biomed Mater Res A, 2013,101(1):176-184. |
[27] | 古丽莎, 吴倩. 化学交联在牙本质粘接修复中的应用及展望[J]. 中华口腔医学研究杂志(电子版), 2019,13(03):129-135. |
[28] | Skopinska-Wisniewska J, Tuszynska M, Olewnik-Kruszkowska E. Comparative Study of Gelatin Hydrogels Modified by Various Cross-Linking Agents[J]. Materials (Basel), 2021,14(2):396. |
[29] | Rose J, Pacelli S, Haj A, et al. Gelatin-Based Materials in Ocular Tissue Engineering[J]. Materials, 2014,7(4):3106-3135. |
[30] | Zeugolis D I, Paul G R, Attenburrow G. Cross-linking of extruded collagen fibers--a biomimetic three-dimensional scaffold for tissue engineering applications[J]. J Biomed Mater Res A, 2009,89(4):895-908. |
[31] | Kasyanov V, Isenburg J, Draughn R A, et al. Tannic acid mimicking dendrimers as small intestine submucosa stabilizing nanomordants[J]. Biomaterials, 2006,27(5):745-751. |
[32] | Mi F L, Tan Y C, Liang H F, et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant[J]. Biomaterials, 2002,23(1):181-191. |
[33] | Vashist S K. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications[J]. Diagnostics, 2012,2(3):23-33. |
[34] | Wang Y, Green A, Yao X, et al. Cranberry Juice Extract Rapidly Protects Demineralized Dentin against Digestion and Inhibits Its Gelatinolytic Activity[J]. Materials, 2021,14(13):3637. |
[35] | Kasper M A, Gerlach M, Schneider A, et al. N-Hydroxysuccinimide-Modified Ethynylphosphonamidates Enable the Synthesis of Configurationally Defined Protein Conjugates[J]. Chembiochem, 2020,21(1-2):113-119. |
[36] | Chen D, Zhu T, Fu W, et al. <p>Electrospun polycaprolactone/collagen nanofibers cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/<em>N-</em>hydroxysuccinimide and genipin facilitate endothelial cell regeneration and may be a promising candidate for vascular scaffolds</p>[J]. 2019,Volume 14:2127-2144. |
[37] | Yao S, Shang Y, Ren B, et al. A novel natural-derived tilapia skin collagen mineralized with hydroxyapatite as a potential bone-grafting scaffold[J]. J Biomater Appl, 2022:1709332006. |
[38] | Grabska-Zielińska S, Sionkowska A, Carvalho ?, et al. Biomaterials with Potential Use in Bone Tissue Regeneration—Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS[J]. Materials, 2021,14(5):1105. |
[39] | álvarez-López A, Colchero L, Elices M, et al. Improved cell adhesion to activated vapor silanization-biofunctionalized Ti-6Al-4V surfaces with ECM-derived oligopeptides[J]. Materials Science and Engineering: C, 2021:112614. |
[40] | Ding X, Xu Y, Wang Y, et al. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics[J]. Carbohydr Polym, 2022,289:119438. |
[41] | Celiker T, Ghorbanizamani F, Moulahoum H, et al. Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(epsilon-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations[J]. Mikrochim Acta, 2022,189(5):202. |
[42] | Khalil M, Haq E A, Dwiranti A, et al. Bifunctional folic-conjugated aspartic-modified Fe3O4 nanocarriers for efficient targeted anticancer drug delivery[J]. RSC Adv, 2022,12(8):4961-4971. |
[43] | Nam K, Kimura T, Kishida A. Controlling coupling reaction of EDC and NHS for preparation of collagen gels using ethanol/water co-solvents[J]. Macromol Biosci, 2008,8(1):32-37. |
[44] | Denning D, Kilpatrick J I, Fukada E, et al. Piezoelectric Tensor of Collagen Fibrils Determined at the Nanoscale[J]. ACS Biomater Sci Eng, 2017,3(6):929-935. |
[45] | Nair M, Calahorra Y, Kar-Narayan S, et al. Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking[J]. Nanoscale, 2019,11(32):15120-15130. |
[46] | Jacob J, More N, Kalia K, et al. Piezoelectric smart biomaterials for bone and cartilage tissue engineering[J]. Inflamm Regen, 2018,38:2. |
[47] | Fagarasan A, Sasaran M O. The Predictive Role of Plasma Biomarkers in the Evolution of Aortopathies Associated with Congenital Heart Malformations[J]. Int J Mol Sci, 2022,23(9). |
[48] | Mazzoni A, Angeloni V, Comba A, et al. Cross-linking effect on dentin bond strength and MMPs activity[J]. Dental Materials, 2018,34(2):288-295. |
[49] | Olde D L, Dijkstra P J, van Luyn M J, et al. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide[J]. Biomaterials, 1996,17(8):765-773. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||